\(P\left(x\right)=ax^3+bx^2+cx+d\)có các hệ số \(a,b,c,d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi

7 tháng 5 2018

p(x)=ax3+bx2+cx+d

p(x)⋮5 ∀ x

=> p(5)⋮5=> (a53+b52+c5+d)⋮5

=> d⋮5

=> (ax3+bx2+cx)⋮5

=>p(1)=a13+b12+c1[p(1)⋮5]

=a+b+c

p(-1)=a(-1)3+b(-1)2+c(-1)[p(-1)⋮5]

=-a+b-c

=>p(1)+p(-1)=(a+b+c)+(-a+b-c)

=b⋮5

=> (ax3+cx)⋮5

ax3+cx

=x(ax2+c)⋮5

=> ax2+c⋮5

Với x=5=> a.52+c⋮5

=> c⋮5

=> ax2⋮5

=>a⋮5

Vậy a,b,c,d ⋮5

22 tháng 2 2019

vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5

có p(0) chí hết cho 5

=>a.03+b.02+c.0+d chia hết cho 5

=> d chia hết cho 5

có p(1) chia hết cho 5

=>a.13+b.12+c.1+d chia hết cho 5

=>a+b+c+d chia hết cho 5

 mà d chia hết cho 5

=>a+b+c chia hết cho 5                   (1)

có p(-1) chia hết cho 5

=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5

=>-a+b-c+d chia hết cho 5

 mà d chia hết cho 5

=>-a+b-c chia hết cho 5                         (2)

Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5

                      => 2b chia hết cho 5

                  mà ucln(2,5)=1

                       => b chia hết cho 5

                   mà a+b+c chia hết cho 5

                        => a+c chia hết cho 5 (3)

có p(2) chia hết cho 5

=>a.23+b.22+c.2+d chia hết cho 5

=> 8a + 4b+2c+d chia hết cho 5

 mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)

=>8a+2c chia hết cho 5

=>2(4a+c) chia hết cho 5

 mà ucln(2,5)=1 

=>4a+c chia hết cho 5     (4)

Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5

                     => 3a chia hết cho 5

                        ma ucln(3,5)=1

                         => a chia hết cho 5

                    mà a+c chia hết cho 5

            => c chia hết cho 5

Vậy a,b,c,d chia hết cho 5

22 tháng 2 2019

vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5

có p(0) chí hết cho 5

=>a.03+b.02+c.0+d chia hết cho 5

=> d chia hết cho 5

có p(1) chia hết cho 5

=>a.13+b.12+c.1+d chia hết cho 5

=>a+b+c+d chia hết cho 5

 mà d chia hết cho 5

=>a+b+c chia hết cho 5                   (1)

có p(-1) chia hết cho 5

=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5

=>-a+b-c+d chia hết cho 5

 mà d chia hết cho 5

=>-a+b-c chia hết cho 5                         (2)

Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5

                      => 2b chia hết cho 5

                  mà ucln(2,5)=1

                       => b chia hết cho 5

                   mà a+b+c chia hết cho 5

                        => a+c chia hết cho 5 (3)

có p(2) chia hết cho 5

=>a.23+b.22+c.2+d chia hết cho 5

=> 8a + 4b+2c+d chia hết cho 5

 mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)

=>8a+2c chia hết cho 5

=>2(4a+c) chia hết cho 5

 mà ucln(2,5)=1 

=>4a+c chia hết cho 5     (4)

Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5

                     => 3a chia hết cho 5

                        ma ucln(3,5)=1

                         => a chia hết cho 5

                    mà a+c chia hết cho 5

            => c chia hết cho 5

10 tháng 3 2018

Ta có: 

\(Q\left(1\right)=a+b+c+d\Rightarrow a+b+c⋮3\left(1\right)\)

\(Q\left(-1\right)=-a+b-c+d⋮3\left(2\right)\)

Cộng (1) với (2), ta có: \(2b+2d⋮3\)

Mà \(d⋮3\Rightarrow2d⋮3\)

\(\Rightarrow2b⋮3\Rightarrow b⋮3\)

\(Q\left(2\right)=8a+4b+2c+d⋮3\)

\(\Rightarrow8a+2c⋮3\)(vì \(4b+d⋮3\))

\(\Rightarrow6a+2a+2c⋮3\)

\(\Rightarrow6a+2\left(a+c\right)⋮3\)

Mà \(a+c⋮3\left(a+b+c⋮3,b⋮3\right)\)

\(\Rightarrow6a⋮3\)

\(\Rightarrow a⋮3\)

\(\Rightarrow c⋮3\)

\(d⋮3\left(gt\right)\)

12 tháng 3 2018

còn thiếu \(b⋮3\)

10 tháng 4 2020

Vì  \(P\left(x\right)=ax^2+bx+c\) với mọi x

=> Ta có: 

Với x = 0 => \(P\left(0\right)=c⋮5\)

Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)

Với  x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)

=> ( a + b ) + ( a  - b ) \(⋮\)

=> 2a \(⋮\)

=> a \(⋮\)

=> b \(⋮\)5

21 tháng 7 2017

\(P_{\left(x\right)}=ax^3+bx^2+cx+d⋮5\) với \(\forall x\in Z\) nên ta có:

+) \(P_{\left(0\right)}⋮5\Rightarrow a.0^3+b.0^2+c.0+d⋮5\Rightarrow d⋮5\)

+) \(P_{\left(1\right)}⋮5\Rightarrow a.1^3+b.1^2+c.1+d⋮5\Rightarrow a+b+c+d⋮5\). Mà \(d⋮5\Rightarrow a+b+c⋮5\) (1)

+) \(P_{\left(-1\right)}⋮5\Rightarrow a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d⋮5\)

\(\Rightarrow-a+b-c+d⋮5\Rightarrow-a+b-c⋮5\) (do \(d⋮5\)) (2)

+) Từ (1) và (2) \(\Rightarrow a+b+c-a+b-c⋮5\Rightarrow2b⋮5\Rightarrow b⋮5\)

+) Do \(a+b+c+d⋮5\)\(b,d⋮5\Rightarrow a+c⋮5\Rightarrow2a+2c⋮5\)

+) \(P_{\left(2\right)}⋮5\Rightarrow8a+4b+2c+d⋮5\Rightarrow8a+2c⋮5\Rightarrow8a+2c+2a+2c⋮5\)

\(\Rightarrow10a+4c⋮5\). Mà \(10a⋮5\Rightarrow4c⋮5\Rightarrow c⋮5\). Do \(a+c⋮5\Rightarrow a⋮5\)

Vậy \(a,b,c,d⋮5\)

21 tháng 7 2017

Câu này y hệt hồi lớp 7 bọn tui thi nè

=====================

+ Xét x = 0 => P(0) = d \(⋮5\)

+ Xét x = 1 => \(P_{\left(1\right)}=\)\(\left(a+b+c+d\right)⋮5\Rightarrow a+b+c⋮5\) (1)

+ Xét x = -1 => P(-1) = \(\left[\left(-a\right)+b+\left(-c\right)+d\right]⋮5\Rightarrow\left[\left(-a\right)+b+\left(-c\right)\right]⋮5\)(2)

Ta có (1) + (2) = \(2b⋮5\) mà (2,5 ) = 1 => b chia hết cho 5

+ Xét P(2) = (8a + 4b+2c+d ) \(⋮5\) => (8a + 2c) \(⋮5\)

<=> 6a + 2a + 2c = 6a+2(a+c) chia hết cho 5

Mà a+b+c chia hết cho 5 ( do d chia hết cho 5 ) , b chia hết cho 5

=> a+c chia hết cho 5

=> 2(a+c) chia hết cho 5

=> 6a chia hết cho 5 mà (6,5)=1

=> a chia hết cho 5

Vì a+ c chia hết cho 5 , a chia hết cho 5 => c chia hết cho 5

Vậy .......

31 tháng 5 2017

Vì p(x) \(⋮\)5 với mọi x

=> Với x =5 => ax3 +bx2 + cx \(⋮\)5 mà p(x)\(⋮\)5 => d \(⋮\)5

=>ax3 +bx2 + cx \(⋮\) với mọi x

tương tự trên => lần lượt c ,b , a \(⋮\)5

=> dpcm

1 tháng 5 2019

đồng nhất hệ số