\(\in\)Z , a \(\ne\)0 )<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Ta có: P(2019) = 2019a + b

       P(1) = a + b

Khi đó, ta có: |P(2019) - P(1)| = |(2019a + b) - (a + b)| = |2019a + b - a - b| = |2018a| 

Vì a \(\ne\)0 => |2018a| \(\ne\)0 => |2018a| \(\ge\)2018

Vậy |P(2019) - P(1)| \(\ge\)2018

16 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax+b\)

\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=a.2018+b\\P\left(1\right)=a.1+b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=2018a+b\\P\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow P\left(2018\right)-P\left(1\right)=2018a+b-\left(a+b\right)\)

\(\Rightarrow P\left(2018\right)-P\left(1\right)=2017a\)

\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|=\left|2017a\right|\)

Do a khác 0 

\(\Rightarrow\left|2017a\right|\ge2017\)

\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\)

Vậy \(\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\left(đpcm\right)\)

30 tháng 5 2020

Em cảm ơn cj

13 tháng 11 2016

a) Đặt A=\(\frac{x^2-1}{x^2}\)

Ta có:

\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)

\(\Rightarrow A=1-\frac{1}{x^2}\)

\(\Rightarrow x\in Z\) để thỏa mãn A<0

 

 

17 tháng 11 2016

b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=>(a^2+b^2)*cd=(c^2+d^2)*ab

a^2cd+b^2cd=abc^c+abd^2

a^2cd+b^2cd-c^2ab-d^2ab=0

(a^2cd-abd^2+(b^2cd-abc^2)=0

ad(ac-bd)-bc(ac-bd)=0

(ad-bc)(ac-bd)=0

=>ad-bc=0 hoặc ac-bd=0

ad=bc ac=bd

=>a/b=c/d hoặc a/d=b/c

 

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

Ta có:

\(P(x)=ax^2+bx+c\)

\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)

Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)

\(=8a+4b=4(2a+b)=0\)

\(\Rightarrow P(3)=P(-1)\)

\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)

Ta có đpcm.

2 tháng 5 2018

2a+b=0=>b=-2a

p(x)=ax^2 -2ax+c

p(-1)=a(-1)^2-2a(-1)+c=3a+c

p(3)=9a-6a+c=3a+c

p(-1).p(3)=(3a+c)^2 >=0=>dpcm

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)