Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P\left(x\right)=ax+b\)
\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=a.2018+b\\P\left(1\right)=a.1+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=2018a+b\\P\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow P\left(2018\right)-P\left(1\right)=2018a+b-\left(a+b\right)\)
\(\Rightarrow P\left(2018\right)-P\left(1\right)=2017a\)
\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|=\left|2017a\right|\)
Do a khác 0
\(\Rightarrow\left|2017a\right|\ge2017\)
\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\)
Vậy \(\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\left(đpcm\right)\)
a) Đặt A=\(\frac{x^2-1}{x^2}\)
Ta có:
\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)
\(\Rightarrow A=1-\frac{1}{x^2}\)
\(\Rightarrow x\in Z\) để thỏa mãn A<0
b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=>(a^2+b^2)*cd=(c^2+d^2)*ab
a^2cd+b^2cd=abc^c+abd^2
a^2cd+b^2cd-c^2ab-d^2ab=0
(a^2cd-abd^2+(b^2cd-abc^2)=0
ad(ac-bd)-bc(ac-bd)=0
(ad-bc)(ac-bd)=0
=>ad-bc=0 hoặc ac-bd=0
ad=bc ac=bd
=>a/b=c/d hoặc a/d=b/c
Lời giải:
Ta có:
\(P(x)=ax^2+bx+c\)
\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)
Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)
\(=8a+4b=4(2a+b)=0\)
\(\Rightarrow P(3)=P(-1)\)
\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)
Ta có đpcm.
2a+b=0=>b=-2a
p(x)=ax^2 -2ax+c
p(-1)=a(-1)^2-2a(-1)+c=3a+c
p(3)=9a-6a+c=3a+c
p(-1).p(3)=(3a+c)^2 >=0=>dpcm
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
a) Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)
\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)
\(=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)
Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)
b) Sửa đề:
Biết \(5a+b+2c=0\)
Giải:
Ta có:
\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)
\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)
\(=5a+b+2c=0\)
\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)
\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)
Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)
Ta có: P(2019) = 2019a + b
P(1) = a + b
Khi đó, ta có: |P(2019) - P(1)| = |(2019a + b) - (a + b)| = |2019a + b - a - b| = |2018a|
Vì a \(\ne\)0 => |2018a| \(\ne\)0 => |2018a| \(\ge\)2018
Vậy |P(2019) - P(1)| \(\ge\)2018