Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)
Vậy đa thức vô nghiệm.
\(x^2+4x+7\)
\(=x^2+2x+2x+4+3\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+3\)
\(=\left(x+2\right).\left(x+2\right)+3\)
\(=\left(x+2\right)^2+3\ge3\)

\(x^2-4x+5=\left(x-2\right)^2+1\ge0\)
Vậy M(x) không có nghiệm
Vì \(x^2\ge0;4x\ge0\Rightarrow x^2-4x+5\ge0+5>0\)
\(\Rightarrow M\left(x\right)=x^2-4x+5\)không có nghiệm

ta có
\(A \left(\right. x \left.\right) = - 2 x^{2} - 3 x^{6} - 0.01 = 0\)
\(- 2 x^{2} - 3 x^{6} = 0.01\)
\(- 2 x^{2} - 3 x^{6} \leq 0\) (vì \(- 2 x^{2} \leq 0\) và \(- 3 x^{6} \leq 0\))
Vế phải 0.01 > 0\(\)
Một số ko âm không thể bằng một số dương
Vậy phương trình vô nghiệm
Ta có: \(3x^6\ge0\forall x\)
\(2x^2\ge0\forall x\)
Do đó: \(3x^6+2x^2\ge0\forall x\)
=>\(-3x^6-2x^2\le0\forall x\)
=>\(A=-3x^6-2x^2-0,01\le-0,01<0\forall x\)
=>A không có nghiệm

Xét x\(\ge\)1
ta có x\(^2\)\(\ge\)x
\(\Rightarrow\)x\(^2\)-x \(\ge\)0
\(\Rightarrow\)x\(^2\)-x+3>0(1)
Xét x\(\le\)0
ta có \(x^2\)>x
\(\Rightarrow\)3-x+x\(^2\)>0(2)
Xét 0<x<1
\(\Rightarrow\)3-x>0
\(\Rightarrow\)x\(^2\)-x+3>0(3)
Từ (1),(2),(3) suy ra f(x) vô nghiệm
Chúc bạn học tốt !

\(x^2\ge0\Rightarrow x^2+1\ge1>0\)
=> \(M\left(x\right)=x^2+1\) vô nghiệm
- X^2 luôn lớn hơn hoặc bằng 0
- X^2+1 luôn lớn hơn hoặc bằng 1
- Suy ra vô nghiệm