K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

M(x) = 4x3 + 2x4- x2- x3 + 2x2 - x4 + 1 - 3x3 = (2x4- x4) + (4x3- x3-3x3) + (2x2-x2) + 1 = x4+x2+1

Ta có x4 ≥ 0 với mọi x và x2 ≥ 0 với mọi x ⇒ x4+x2+1 > 0 với mọi x

⇒ M(x) vô nghiệm

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

22 tháng 8 2016

f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2

Ta có: x2>=0(với mọi x)

=>x2+1>=1(với mọi x)

=>(x2+1)2>0(với mọi x)

hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm

Vậy f(x) không có nghiệm

12 tháng 5 2016

Ta có:

 f(x) = 2x6+3x2+5x3-2x2+4x4-x3+1-4x3-x4.

f(x)=2x6+4x4-x4+5x3-x3-4x3+3x2-2x2+1

f(x)=2x6+3x4+x2+1

            Vì 2x6\(\ge\)0

                   3x4\(\ge\)0

                   x2\(\ge\)0

\(\Rightarrow\)2x6+3x4+x2+1\(\ge\)1

Do đó f(x) ko có nghiệm

12 tháng 5 2016

t lm đúng m thấy chưaToán lớp 7

 

28 tháng 3 2018

a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến

M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1

=x4+2x2+1

b) M(1)=14+2.12+1=4

M(−1)=(−1)4+2.(−1)2+1=4

c) Ta có: M(x)=x4+2x2+1

Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0  với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.

21 tháng 6 2020

Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3

                     = ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1

                     = x4 + 2x2 + 1

Có : \(x^4\ge0\forall x\)

\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)

=> \(x^4+2x^2+1\ge1>0\forall x\)

=> M(x) vô nghiệm ( đpcm ) 

21 tháng 6 2020

Câu 2 : A(x) = m + nx + px( x - 1 )

A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5

              <=> n + 0 + 0 = 5

              <=> m = 5

A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2

               <=> 5 + n + 0 = -2

               <=> 5 + n = -2

               <=> n = -7

A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7

              <=> 5 - 14 + 2p . 1 = 7

              <=> -9 + 2p = 7

              <=> 2p = 16 

              <=> p = 8

Vậy A(x) = 5 + (-7)x + 8x( x - 1 )

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

26 tháng 7 2019

\(M\left(x\right)=5x^3+2x^4-x^3+3x^2-x^3-x^4+1-4x^3\)

\(M\left(x\right)=x^4+2x^2+1\)

Dễ thấy: \(\hept{\begin{cases}x^4\ge0\\2x^2\ge0\end{cases}}\Rightarrow x^4+2x^2\ge0\)

\(M\left(x\right)=x^4+2x^2+1\ge1\)

=> đa thức M(x) vô nghiệm

26 tháng 7 2019

Lê Trung HiếuKo bt rút gọn à

\(M\left(x\right)=x^4-x^3+3x^2+1\)

22 tháng 4 2017

a. Sắp xếp theo lũy thừa giảm dần của biến:

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)

b. P(x) - Q(x)=\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\right)\)

=\(5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-\dfrac{1}{4}\)

=\(\left(5x^5+x^5\right)+\left(-4x^4-2x^4\right)+\left(-2x^3+2x^3\right)+\left(4x^2-3x^2\right)+\left(3x+x\right)+\left(6-\dfrac{1}{4}\right)\)

=\(6x^5-6x^4+x^2+4x+\dfrac{23}{4}\)

c.Ta có:\(P\left(-1\right)=5.\left(-1\right)^5-4.\left(-1\right)^4-2.\left(-1\right)^3+4.\left(-1\right)^2+3.\left(-1\right)+6\)

= -5 -4 +2 +4 -3 +6

= 0

\(Q\left(x\right)=-\left(-1\right)^5+2.\left(-1\right)^4-2.\left(-1\right)^3+3.\left(-1\right)^2-\left(-1\right)+\dfrac{1}{4}\)

= 1 + 2 +2 +3 +1 +\(\dfrac{1}{4}\)

= \(\dfrac{37}{4}\ne0\)

Vậy x=-1 là nghiệm của đa thức P(x) nhưng k là nghiệm của đa thức Q(x)