Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
Bạn tham khảo lời giải tại đây:
CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24
Ta có : \(f\left(x\right)=ax^2+bx+c=a\left(x^2+\frac{bx}{a}\right)+c=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c\)
\(=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\ge-\frac{b^2-4ac}{4a}\)(vì a>0)
Dấu đẳng thức xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)
Do đó : Min f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=-\frac{b}{2a}\)
b) \(f\left(x\right)=-ax^2+bx+c=-a\left(x^2-bx\right)+c=-a\left(x^2-2.x.\frac{b}{2a}+\frac{b^2}{4a^2}\right)-\frac{b^2}{4a}+c=-a\left(x-\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\le\frac{4ac-b^2}{4a}\)(vì a<0)
Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{b}{2a}\)
Vậy Max f(x) = \(\frac{4ac-b^2}{4a}\Leftrightarrow x=\frac{b}{2a}\)
\(P\left(x\right)=ax^2+bx+c\)
Thấy rằng: \(\hept{\begin{cases}P\left(0\right)=x\\P\left(1\right)=a+b+c\\P\left(-1\right)=a-b+c\end{cases}}\)
Do P(x) nguyên với mọi x nguyên nên P(0) = c là số nguyên.
Mặt khác: \(2\left(a+c\right)=P\left(1\right)+P\left(-1\right)\inℤ\Rightarrow2a\text{ là SN}\)
P(1) nguyên c nguyên nên a + b nguyên
Ta có: \(P\left(x\right)=2ax^2+2\left(a+b\right)x+2c-2ax\) (1)
Nhận thấy VP(1) là số chẵn với mọi x nguyên và 2a; a + b; c nguyên nên => đpcm
bn ơi sao ở trên P(0)=x mà ở dưới lại suy ra đc P(0)=c vậy, c không = x mà
Đặt \(g(x)=10x\).
Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).
Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).
Đoạn cuối mình làm nhầm nhé.
Đáng lẽ phải cm Q(x) là đa thức dạng x + m, rồi biến đổi \(f\left(8\right)+f\left(-4\right)=80+Q\left(8\right).7.6.5+\left(-40\right)+Q\left(-4\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-40+\left(m+8\right).7.6.5-\left(m-4\right).5.6.7=12.5.6.7+40=2560\).
Mình đánh vội nên chưa suy nghĩ kĩ.
*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.
\(P\left(0\right)=c\) nguyên.
\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)
\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)
-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.
\(\Rightarrow\)đpcm.
*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.
-Từ đây suy ra cả 3 số a,b,c đều nguyên.
\(\Rightarrow\)đpcm.
Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(
Ta có:
\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)
\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)
Theo định lý Huy ĐZ ta có:
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)
\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)
Lấy \(\left(1\right)-\left(2\right)\) ta được:
\(9+3a+3b=9\Leftrightarrow a+b=0\)
Khi đó:
\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)
\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )
Ap dung dinh ly Bozout ta co
\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)
<=> \(4a+2b+c=-3\) (1)
tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)
<=> \(a-b+c=-3\) (2)
tu (1) va (2) => \(4a+2b=a-b=-3\)
=> a=b+-3
=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)
=> \(a=-\frac{3}{2}\)
=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)
=> gia tri bieu thuc =0
Lời giải:
Theo bài ra ta có:
\(\left\{\begin{matrix} f(0)=c\in\mathbb{Z}(1)\\ f(1)=a+b+c\in\mathbb{Z}(2)\\ f(2)=4a+2b+c\in\mathbb{Z}(3)\end{matrix}\right.\)
Từ $(1);(2)\Rightarrow a+b\in\mathbb{Z}$
$\Rightarrow 2a+2b\in\mathbb{Z}(4)$
Từ $(1);(3)\Rightarrow 4a+2b\in\mathbb{Z}(5)$
Từ $(4);(5)\Rightarrow 2a\in\mathbb{Z}(6)$
Từ $(4);(6)\Rightarrow 2b\in\mathbb{Z}$
Vậy ta có đpcm.