Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
f(5)=25a+5b+c chia hết cho 9;f(9)=81a+9b+c chia hết cho 5
ta có:f(104)=10816a+104b+c=(81a+9b+c)+(10735a+95b) chia hết cho 5
=(25a+5b+c)+(10791a+99b) chia hết cho 9
Mà (5,9)=1
Nên f(104) chia hết cho 45(đpcm)
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 \(⋮\) (m – n)
Ta có : f(x)=ax2-bx+c
=> Tính chất: f (m) – f(n) \(⋮\) ( m – n)
Ta có:
f(104) – f(9) \(⋮\)105
=> f(104) – f(9) \(⋮\)5
=> f(104) \(⋮\)5
Mặt khác:
f(104) – f(5) \(⋮\)99
=> f(104) – f(5) \(⋮\)9
=> f(104) \(⋮\)9
Vậy f(104) \(⋮\)(5.9) = 45
GIẢ SỬ \(\frac{A}{B}=\frac{C}{D}\)
ĐẶT\(\frac{A}{B}=\frac{C}{D}=T\)=>A = BT , C = DT
TA CÓ\(\frac{\left(A^2+B^2\right)}{\left(C^2+D^2\right)}=\frac{\left(\left(B\cdot T\right)^2+B^2\right)}{\left(\left(D\cdot T\right)^2+D^2\right)}=\frac{\left(B^2\cdot\left(T^2+1\right)\right)}{\left(D^2\cdot\left(T^2+1\right)\right)}=\frac{B^2}{D^2}=\left(\frac{B}{D}\right)^2\left(1\right)\)
LẠI CÓ\(\frac{\left(A\cdot B\right)}{\left(C\cdot D\right)}=\frac{\left(B\cdot T\cdot B\right)}{\left(D\cdot T\cdot D\right)}=\frac{B^2}{D^2}=\left(\frac{B}{D}\right)^2\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{\left(A^2+B^2\right)}{\left(C^2+D^2\right)}=\frac{\left(A\cdot B\right)}{\left(C\cdot D\right)}\)( THÕA ĐỀ )
=> ĐIỀU GIẢ SỬ ĐÚNG => DPCM
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45