Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(2\right)=4a+2b+c=0\)
\(f\left(-2\right)=4a-2b+c=0\)
=> 4a + 2b + c = 4a - 2b + c
=> 2b = -2b
=> 4b = 0
=> b = 0
Từ đề bài , ta có : a = c + 3
Theo f(2) , ta có :
\(f\left(2\right)=4a+0+a+3=0\)
\(f\left(2\right)=5a+3=0\)
\(\Rightarrow a=-\frac{3}{5}\)
Làm tương tự với f(-2) , a cũng giống kết quả
\(\Rightarrow c=a-3=\frac{-3}{5}-3=-\frac{18}{5}\)
Vậy a,b,c lần lượt là ....
Ta có :
F (x) = ax +b
Xét 2 trường hợp :
+> F (x) = 3
a .1 +b = 3
=> a +b = 3 (1)
+> F (-2)=2
a.(-2) + b = 2
=> -2a +b = 2 (2)
Từ ( 1 ) và (2) =>
(a-b) + (-2a +b ) = 3 + 2
=> -1a = 5
=> a = 5
=> b = -2
f(x)=ã+b
f(0)=b=3
f(1)=a+b=2
Thay b=3 vào f(1) ta có:
f(1)=a+3=2 suy ra a=-1
Vậy a=-1;b=3
\(f\left(x\right)=ax+b\)
\(f\left(0\right)=b=3\)
\(f\left(1\right)=a+b=2\)
Thay b = 3 vào f(1)
\(f\left(1\right)=a+3=2\Rightarrow a=-1\)
Vậy b = 3; a = -1
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)