K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

Đề sai rồi bạn

16 tháng 3 2022

Sửa đề: f(x) = x² - 4x + 3

a) f(0) = 0 - 4.0 + 3 = 3

f(1) = 1 - 4.1 + 3 = 0

f(3) = 9 - 4.3 + 3 = 0

b) x = 1 và x = 3 là nghiệm của đa thức f(x) vì f(1) = 0 và f(3) = 0

17 tháng 4 2019

Chia làm 3 khoảng để xét.

Khoảng thứ nhất:\(x< 0\)

Khi đó:\(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)

\(=x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1\)

Do \(x< 0\Rightarrow\hept{\begin{cases}x^5< 0\\x-1< 0\end{cases}}\Rightarrow x^5\left(x-1\right)>0\)

Tương tự ta có:\(\hept{\begin{cases}x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\)

Khi đó \(x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)

Khoảng thứ 2:\(0< x< 1\)

Khi đó \(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)

\(=x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)\)

Do \(0< x< 1\Rightarrow x-1< 0\Rightarrow\hept{\begin{cases}x^4\left(x-1\right)< 0\\x^2\left(x-1\right)< 0\\x-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x^4\left(x-1\right)>0\\x^2\left(x-1\right)>0\\-\left(x-1\right)>0\end{cases}}\)

\(\Rightarrow x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)>0\) vì \(x^6>0\)

Khoảng thứ 3:\(1< x\)

Khi đó:\(\hept{\begin{cases}x^5\left(x-1\right)>0\\x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\Rightarrow x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)

Xét \(x=0\Rightarrow f\left(x\right)=1>0\)

Xét \(x=1\Rightarrow f\left(x\right)=1-1+1-1+1-1+1=1>0\)

\(\Rightarrowđpcm\)

5 tháng 4 2016

a)  4-2m +2 = 0 

m = 3

b) thay m =2 vao ta co; 

x2 + 2x +2 = 0 ta tim dc tap nghiem tu giai nhe ng dep

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{x^2-4x+7}\)

\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)

\(A=\frac{1}{\left(x-2\right)^2+3}\)

Lại có : 

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)

\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)

Chúc bạn học tốt ~ 

22 tháng 4 2018

\(b)\) Ta có : 

\(f\left(x\right)=x^2-4x+7\)

\(f\left(x\right)=\left(x^2-4x+4\right)+3\)

\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm 

Chúc bạn học tốt ~ 

a: f(2)=2*2^2-3*2+4=8-6+4=2+4=6

b: h(x)=-2x^2+x-1+f(x)

=-2x^2+x-1+2x^2-3x+4

=-2x+3

12 tháng 3 2023

\(a,\) \(f\left(2\right)=2.2^2-3.2+4\) \(\Rightarrow f\left(2\right)=6\)

\(b,h\left(x\right)-f\left(x\right)=-2x^2+x-1\)

\(\Rightarrow h\left(x\right)=-2x^2+x-1+f\left(x\right)\)

\(\Rightarrow h\left(x\right)=-2x^2+x-1+2x^2-3x+4\)

\(\Rightarrow h\left(x\right)=-2x+3\)