\(\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

Đặt \(g\left(x\right)=f\left(x\right)+h\left(x\right)\left(1\right)\)trong đó \(h\left(x\right)=ax^2+bx+c\left(2\right)\)

Tìm \(a,b,c\)sao cho \(g\left(1\right)=g\left(2\right)=g\left(3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}g\left(1\right)=f\left(1\right)+h\left(1\right)=0\\g\left(2\right)=f\left(2\right)+h\left(2\right)=0\\g\left(3\right)=f\left(3\right)+h\left(3\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}h\left(1\right)=-5\\h\left(2\right)=-11\\h\left(3\right)=-21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b+c=-5\\4a+2b+c=-11\\9a+3b+c=-21\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b+c=-5\\3a+b=-6\\5a+b=-10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-2\\b=0\\c=-3\end{cases}}\)Thay vào (2) ta được:

\(h\left(x\right)=4x-3\)

Vì \(g\left(1\right)=g\left(2\right)=g\left(3\right)=0\)mà g(x)  bậc 4 có hệ số cao nhất là 1 nên ta có 

 \(g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-x_0\right)\)

Từ \(\left(1\right)\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-x_0\right)+4x-3\)

\(f\left(-1\right)=\left(-1-1\right)\left(-1-2\right)\left(-1-3\right)\left(-1-x_0\right)+4.\left(-1\right)-3\)

\(=-24\left(-1-x_0\right)-7\)

\(f\left(5\right)=\left(5-1\right)\left(5-2\right)\left(5-3\right)\left(5-x_0\right)+4.5-3\)

\(=24\left(5-x_0\right)+17\)

\(\Rightarrow f\left(-1\right)+f\left(5\right)\)\(=-24\left(-1-x_0\right)-7+24\left(5-x_0\right)+17\)

                                            \(=24+24x_0+120-24x_0+10\)

                                             \(=154\)

21 tháng 12 2019

Xl nha bài sai sót vì thay a,b,c sai r xl 

NV
25 tháng 11 2019

Xét hàm \(g\left(x\right)=f\left(x\right)-10x\)

\(\Rightarrow g\left(1\right)=f\left(1\right)-10.1=10-10=0\)

Tương tự \(g\left(2\right)=0\) ; \(g\left(3\right)=0\)

\(\Rightarrow g\left(x\right)\) luôn có 3 nghiệm \(x=\left\{1;2;3\right\}\)

\(\Rightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\) với a là số thực bất kì

\(\Rightarrow f\left(x\right)=g\left(x\right)+10x=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)

\(\Rightarrow f\left(12\right)=990\left(12-a\right)+120=12000-990a\)

\(f\left(-8\right)=-990\left(-8-a\right)-80=7840+990a\)

\(\Rightarrow\frac{f\left(12\right)+f\left(-8\right)}{10}+15=\frac{12000-990a+7840+990a}{10}+15=1999\)

NV
13 tháng 9 2021

Đặt \(g\left(x\right)=f\left(x\right)-x-1\Rightarrow g\left(2\right)=g\left(3\right)=g\left(4\right)=0\)

\(\Rightarrow g\left(x\right)\) có 3 nghiệm 2;3;4

\(\Rightarrow g\left(x\right)=a\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

\(\Rightarrow f\left(x\right)=g\left(x\right)+x+1=a\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(f\left(5\right)=10\Rightarrow a\left(5-2\right)\left(5-3\right)\left(5-4\right)+5+1=10\)

\(\Rightarrow a=\dfrac{2}{3}\)

\(\Rightarrow f\left(x\right)=\dfrac{2}{3}\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(\Rightarrow f\left(6\right)=\dfrac{2}{3}.4.3.2+6+1=...\)