\(f\left(x\right)=x^{2016}+x^{2015}+x^3+x\)

Tìm đa thức dư trong phé...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 8 2018

Lời giải:

Đặt \(f(x)=x^{2016}+x^{2015}+x^{200}+x^2=(x^2-1)Q(x)+ax+b\) trong đó, $Q(x)$ là đa thức thương, $ax+b$ là đa thức dư

Ta có:

\(f(1)=1+1+1+1=(1^2-1)Q(1)+a+b\)

\(\Leftrightarrow 4=a+b(1)\)

\(f(-1)=1+(-1)+1+1=[(-1)^2-1]Q(-1)-a+b\)

\(\Leftrightarrow 2=-a+b(2)\)

Từ \((1);(2)\Rightarrow a=1; b=3\)

Vậy đa thức dư là $x+3$

20 tháng 12 2016

1

17 tháng 1 2017

Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)

Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1

Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1

4 tháng 12 2018

x \(\varepsilon\) { 1 ; -4 }

4 tháng 12 2018

\(f\left(x\right)=\left(x^4+x\right)+\left(3x^3+3\right)+x^2-5x+4=x\left(x^3+1\right)+3\left(x^3+1\right)+x^2-5x+4\)

Để dư bằng 0 thì \(x^2-5x+4=0\)

\(\Rightarrow x\left(x-4\right)-\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

10 tháng 12 2017

Dùng thêm bớt