\(f\left(x\right)=ax^2+bx+c\)

(a,b,c là hằng số).

Chứng mi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

14 tháng 1 2021

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=9a-3b+c\\f\left(4\right)=16a+4a+c\end{cases}}\) \(\Rightarrow f\left(-3\right)+f\left(4\right)=25a+b+2c=0\)

\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)

Khi đó: \(f\left(-3\right)\cdot f\left(4\right)=-f\left(4\right)\cdot f\left(4\right)=-\left[f\left(4\right)\right]^2< 0\)

Đề bài bị sai rồi phần đpcm phải là "\(\le\)" chứ không phải "\(< \)

Ta có : \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}f\left(-3\right)=a.\left(-3\right)^2+b.\left(-3\right)+c=9a-3b+c\\f\left(4\right)=a.4^2+b.4+c=16a+4b+c\end{cases}}\)

\(\Rightarrow f\left(4\right)+f\left(-3\right)=\left(16a+4b+c\right)+\left(9a-3b+c\right)=25a+b+2c=0\)

\(\Rightarrow f\left(-3\right)+f\left(4\right)=0\)

\(\Rightarrow f\left(-3\right)=-f\left(4\right)\)

\(\Rightarrow f\left(-3\right).f\left(4\right)=-f\left(4\right).f\left(4\right)=-[f\left(4\right)]^2\le0\)\(\forall x\)

\(\Rightarrowđpcm\)

13 tháng 5 2019

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)

                    \(=4a-2b+c\)

\(\Rightarrow f\left(3\right)=a.3^2+b.3+c\)

                  \(=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

                                      \(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)

11 tháng 5 2017

kho qua chi k cho em di  em se lam duoc

23 tháng 1 2018

Vì \(29a+2c=3b\) => \(c=\frac{3b-29a}{2}\)

Ta có: \(f\left(2\right).f\left(-5\right)=\left[a.2^2+b.2+c\right]\left[a\left(-5\right)^2+b.\left(-5\right)+c\right]\)

       \(=\left(4a+2b+c\right)\left(25a-5b+c\right)\)

        \(=\left(4a+2b+\frac{3b-29a}{2}\right)\left(25a-5b+\frac{3b-29a}{2}\right)\)

       \(=\left(\frac{8a+4b+3b-29a}{2}\right)\left(\frac{50a-10b+3b-29a}{2}\right)\)

        \(=\left(\frac{-21a+7b}{2}\right)\left(\frac{21a-7b}{2}\right)\)

          \(=\frac{-7}{2}\left(3a-b\right).\frac{7}{2}\left(3a-b\right)\)

           \(=\frac{-49}{4}\left(3a-b\right)^2\le0\) (ĐFCM)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ta có:

$f(4)=16a+4b+c$

$f(-2)=4a-2b+c$

Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$

$\Rightarrow f(-2)=-f(4)$

$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$

Ta có đpcm.