Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức \(f\left(x\right)=a.x^2+b.x+c\)
Tính giá trị \(f\left(-1\right)\)biết rằng \(a+c=b+2018\)
Ta có : \(f\left(-1\right)=\left(-1\right)^2.a+\left(-1\right).b+c=a-b+c\)
Do a + c = b + 2018 , suy ra
\(f\left(-1\right)=b+2018-b=2018\)
Vậy ............
Thử x=-1 vào biểu thức trên ta có :
P(x)=a.1+(-b)+c
=>P(x)=a-b+c
Mà a-b+c=0
=>-1 là 1 nghiệm của P(x)
=>ĐPCM
Thay x=-1 vào P(x) ta có P(-1)=a(-1)^2+b*(-1)+c=a-b+c=0 => x=-1 là 1 nghiệm của đa thức
Ta có f(0)=c chia hết cho 3
f(1)=a+b+c chia hết cho 3, mà c chia hết cho 3=> a+b chia hết cho 3.
f(-1)=a-b+c chia hết cho 3, c chia hết cho 3 => a-b chia hết cho 3.
Vì a,b,c nguyên nên a+b+a-b=2a chia hết cho 3. Do 2 và 3 nguyên tố cùng nhau => a phải chia hết cho 3.
a,c chia hết cho 3, a+b+c chia hết cho 3=> b chia hết cho 3
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
ta có f(2)=0 =>4a2+2b+c=0 => 4a2+2b=-c (1)
f(-2)=0 => 4a2- 2b+c=0 => 4a2-2b=-c (2)
từ (1), (2) => a=0, b=1, c=-2
Ta có:
\(f\left(0\right)=a.0^2+b.0+c=0\)
\(=0+0+c=0\Rightarrow c=0\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=0\)
\(a-b+0=0\)
\(\Rightarrow a-b=0\)
\(\Rightarrow a=b\)
\(f\left(1\right)=a.1^2+b.1+c=0\)
\(\Rightarrow a+b+0=0\)
\(\Rightarrow a+b=0\)
Mà \(a=b\)
\(\Rightarrow a=b=\frac{0}{2}=0\)
Vậy \(a=b=c=0\)