\(f\left(x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)

Biết rằng:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

\(f(1)=f(-1)\)

\(\Leftrightarrow a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\)

\(\Leftrightarrow 2(a_3+a_1)=0\Leftrightarrow a_3+a_1=0(1)\)

\(f(2)=f(-2)\)

\(\Leftrightarrow 16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\)

\(\Leftrightarrow 16a_3+4a_1=0\Leftrightarrow 4a_3+a_1=0(2)\)

Từ \((1);(2)\Rightarrow a_3=a_1=0\)

Do đó:
\(f(x)=a_4x^4+a_2x^2+a_0\)

\(\Rightarrow f(-x)=a_4(-x)^4+a_2(-x)^2+a_0=a_4x^4+a_2x^2+a_0\)

Vậy $f(x)=f(-x)$.

DD
6 tháng 2 2021

\(f\left(1\right)=a_{2017}+a_{2016}+...+a_3+a_2+a_1+a_0\)

\(f\left(-1\right)=-a_{2017}+a_{2016}+...-a_3+a_2-a_1+a_0\)

\(f\left(1\right)+f\left(-1\right)=2\left(a_{2016}+a_{2014}+...+a_2+a_0\right)\)

\(S=\frac{f\left(1\right)+f\left(-1\right)}{2}=\frac{3^{2017}+1}{2}\)

\(f\left(3\right)=a_13^1+a_23^3+a_33^5\)

\(\Rightarrow f\left(-3\right)=-a_13^1+-a_23^3+-a_33^5=-\left(a_13^1+a_23^3+a_33^5\right)=-f\left(3\right)=208\Rightarrow f\left(3\right)=-208\)

Vậy f(3)=-208

25 tháng 3 2018

a. Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

= x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

= -x3 + 4x2 – x + 6

b. Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

= x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

= x3 – 4x2 + x – 6

15 tháng 12 2017

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

20 tháng 9 2017

Ta có \(f\left(1\right)=a+b+c\)\(f\left(-1\right)=a-b+c\)

\(f\left(1\right)=f\left(-1\right)\) nên \(a+b+c=a-b+c\Rightarrow b=0\)

\(f\left(x\right)=ax^2+bx+c=ax^2+c\)

\(f\left(-x\right)=ax^2-bx+c=ax^2+c\)

Vậy \(f\left(x\right)=f\left(-x\right)\)

21 tháng 1 2020

\(x.f\left(x+2\right)=\left(x^2-9\right).f\left(x\right)\)

+ Thay \(x=3\) vào đa thức \(f\left(x\right)\) ta được:

\(3.f\left(3+2\right)=\left(3^2-9\right).f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=\left(9-9\right).f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=0.f\left(3\right)\)

\(\Rightarrow3.f\left(5\right)=0\)

\(\Rightarrow f\left(5\right)=0:3\)

\(\Rightarrow f\left(5\right)=0.\)

Vậy \(x=5\) là nghiệm của đa thức \(f\left(x\right)\) (1).

+ Thay \(x=-3\) vào đa thức \(f\left(x\right)\) ta được:

\(-3.f\left[\left(-3\right)+2\right]=\left[\left(-3\right)^2-9\right].f\left(-3\right)\)

\(\Rightarrow-3.f\left(-1\right)=\left(9-9\right).f\left(-3\right)\)

\(\Rightarrow-3.f\left(-1\right)=0.f\left(-3\right)\)

\(\Rightarrow-3.f\left(-1\right)=0\)

\(\Rightarrow f\left(-1\right)=0:\left(-3\right)\)

\(\Rightarrow f\left(-1\right)=0.\)

Vậy \(x=-1\) là nghiệm của đa thức \(f\left(x\right)\) (2).

+ Thay \(x=0\) vào đa thức \(f\left(x\right)\) ta được:

\(0.f\left(0+2\right)=\left(0^2-9\right).f\left(0\right)\)

\(\Rightarrow0.f\left(2\right)=\left(0-9\right).f\left(0\right)\)

\(\Rightarrow0=-9.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0:\left(-9\right)\)

\(\Rightarrow f\left(0\right)=0.\)

Vậy \(x=0\) là nghiệm của đa thức \(f\left(x\right)\) (3).

Từ (1), (2) và (3) \(\Rightarrow\) Đa thức \(f\left(x\right)\) có ít nhất 3 nghiệm đó là: \(x=3;x=-3\)\(x=0\left(đpcm\right).\)

Chúc bạn học tốt!

Tham khảo :

Xét với x=3x=3 thì : 3.f(5)=(329).f(3)3.f(5)=(32−9).f(3)

3.f(5)=0f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)

Xét với x=00=9.f(0)f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0

nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)

Xét với x=33.f(1)=0f(1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0

nên x=1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)

Từ (*)(1)(2) f(x)f(x) có ít nhất 3 nghiệm.