Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)
Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$
Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)
Ta có: \(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
\(m^2.\left(x-1\right)^{2013}-13.m.\left(x-1\right)^{2014}+36.\left(x-1\right)^{2015}=0\)
thay x=2014 ta có:
\(f\left(x\right)=2014^{17}-2015.2014^{16}+2015.2014^{15}-2015.2014^{14}+...+2015.2014-1 \)
=2014^17 - (2014+1).2014^16 + (2014+1).2014^15 - (2014+1).2014^14 + ... + (2014+1).2014-1
=2014^17 - 2014^17 - 2014^16 + 2014^16 + 2014^15 - 2014^15 + 2014^14 + ...-2014^3 - 2014^2 + 2014^2 + 2014 -1
=2014-1=2013
= em không biết .