\(f_{\left(x\right)}=ax+b\)

Tìm điều kiện của a, b để :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

CTV hay ai đó giải đi

21 tháng 6 2019

Có câu nào khó hơn không?

6 tháng 5 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a\cdot2^2+2b+c=4a+2b+c\\f\left(-5\right)=a\cdot\left(-5\right)^2-5b+c=25a-5b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=\left(4a+2b+c\right)\left(25a-5b+c\right)\)

Lại có:\(25a-5b+c=29a+2c-c-4a-5b\)

\(=3b-c-4a-5b=-2b-c-4a=-\left(4a+2b+c\right)\)

\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=-\left(4a+2b+c\right)\left(4a+2b+c\right)\)

\(=-\left(4a+2b+c\right)^2\le0\forall a,b,c\)

7 tháng 5 2017

=> Q(2)=a2^2+2b+c=4a+2b+c

Q(-1)=a(-1)^2+(-1)b+c=a-b+c

Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c

=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c

12 tháng 12 2018

Nguyễn Việt Lâm Trần Trung Nguyên tran nguyen bao quan Shurima Azir Nguyễn Thanh Hằng Mysterious Person Phùng Khánh Linh Aki Tsuki

12 tháng 12 2018

a) f(0)=0 ---> x = 0

mà y= f(x) = ax --> y= a.0=0

b) ta có: f(x) = ax

mà f(x1)/x1 = f(x2)/x2

--> ax1/x1 = ax2/x2

--> a=a --> a-a = 0

Chắc sai nhưng t nghĩ là làm vậy :vv

6 tháng 11 2018

a) theo tính chất  ta có: f(0+0)= f(0)+f(0)

=> f(0)=f(0)+f(0)

=> f(0)-f(0)=f(0)+f(0)-f(0)

=> 0=f(0)

hay f(0)=0

b)  f(0)=f(-x+x)=f(-x)+f(x)

=>0=f(-x)+f(x)

=> f(-x)=0-f(x)=-f(x)

c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)

15 tháng 6 2017

a, f(10x) = k.(10x) = 10.(kx) = 10.f(x)

b, f(x1 + x2) = k(x1 + x2) = kx1 + kx2 = f(x1) + f(x2)

c, f(x1 - x2) = k(x1 - x2) = kx1 - kx2 = f(x1) - f(x2)