Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử nghiệm chung là x=c => xQ(x)-P(x)=x-1
=> cQ(c)-P(x)=c-1
vì x=c là nghiệm của Q(x) và P(x) =>P(c)=Q(c)=0
=> c-1=0 =>c=1
khi c=1 => P(1)=Q(1)=a+2 =>a=-2
\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
Đặt \(x^2-9x+14=y\)
\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)
\(\Leftrightarrow A=y^2-36+2002\)
\(\Leftrightarrow A=y^2+1966\ge1966\)
Dấu "=" xảy ra khi
\(x^2-9x+14=0\)
\(\Leftrightarrow x=2,7\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)