K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\left(a\inℤ^+\right)\)

\(f\left(5\right)=125a+25b+5c+d\)

\(f\left(3\right)=27a+9b+3c+d\)

\(\Rightarrow f\left(5\right)-f\left(3\right)=98a+16b+2c\)

Mà \(f\left(5\right)-f\left(3\right)=2022\) nên \(98a+16b+2c=2022\) 

\(\Leftrightarrow49a+8b+c=1011\)

Lại có \(f\left(7\right)=343a+49b+7c+d\)

\(f\left(1\right)=a+b+c+d\)

\(\Rightarrow f\left(7\right)-f\left(1\right)=342a+48b+6c\) \(=6\left(57a+8b+c\right)\) \(=6\left(8a+1011\right)\) (vì \(49a+8b+c=1011\))

 Mà do \(a\inℤ^+\) nên \(f\left(7\right)-f\left(1\right)\) là hợp số (đpcm)

17 tháng 10 2023

công thức tổng quát: f(x)=x3        sdasdasdadasd

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

6 tháng 8 2019

f(x) có nghiệm 

=> \(b^2\ge4c\)

\(f\left(2\right)=4+2b+c=\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+c+1+1+1+1\)

                                        \(\ge9\sqrt[9]{\frac{1}{16}b^4c}\ge9\sqrt[9]{\frac{1}{16}.\left(4c\right)^2.c}=9\sqrt[3]{c}\)(ĐPCM)

Dấu bằng xảy ra khi b=2,c=1

1 tháng 9 2018

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

2 tháng 9 2018

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý 

12 tháng 9 2015

thử vào câu hỏi tương tự coi nhìn vào mà làm

12 giờ trước (20:50)
  1. Đặt dạng đa thức
    Giả sử

\(f \left(\right. x \left.\right) = a x^{3} + b x^{2} + c x + d , a \in \mathbb{Z}^{+} , \textrm{ } b , c , d \in \mathbb{R} .\)

  1. Dùng điều kiện đề bài
    Ta có:

\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = \left(\right. 2001 - 2000 \left.\right) = 1.\)

Nhưng

\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = a \left(\right. 2000^{3} - 1999^{3} \left.\right) + b \left(\right. 2000^{2} - 1999^{2} \left.\right) + c \left(\right. 2000 - 1999 \left.\right) .\)

  • \(2000^{3} - 1999^{3} = \left(\right. 2000 - 1999 \left.\right) \left(\right. 2000^{2} + 2000 \cdot 1999 + 1999^{2} \left.\right) .\)

\(= 1 \cdot \left(\right. 2000^{2} + 2000 \cdot 1999 + 1999^{2} \left.\right) .\)

Tính:

\(2000^{2} = 4,000,000 , 2000 \cdot 1999 = 3,998,000 , 1999^{2} = 3,996,001.\)

Tổng = \(11,994,001\).
\(\Rightarrow 2000^{3} - 1999^{3} = 11,994,001.\)

  • \(2000^{2} - 1999^{2} = \left(\right. 2000 - 1999 \left.\right) \left(\right. 2000 + 1999 \left.\right) = 1 \cdot 3999 = 3999.\)
  • \(2000 - 1999 = 1.\)

Vậy:

\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = 11,994,001 a + 3999 b + c = 1. \left(\right. 1 \left.\right)\)

  1. Tính hiệu cần chứng minh

\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = ?\)

Tính từng phần:

\(2001^{3} - 1998^{3} = \left(\right. 2001 - 1998 \left.\right) \left(\right. 2001^{2} + 2001 \cdot 1998 + 1998^{2} \left.\right) .\) \(= 3 \cdot \left(\right. 2001^{2} + 2001 \cdot 1998 + 1998^{2} \left.\right) .\)

  • \(2001^{2} = 4,004,001 ,\)
  • \(2001 \cdot 1998 = 3,996, - k i ể m t r a\)

\(2001 \cdot 1998 = 2001 \cdot \left(\right. 2000 - 2 \left.\right) = 2001 \cdot 2000 - 4002 = 4,002,000 - 4002 = 3,997,998.\)

  • \(1998^{2} = \left(\right. 2000 - 2 \left.\right)^{2} = 4,000,000 - 8000 + 4 = 3,992,004.\)

Cộng: \(4,004,001 + 3,997,998 + 3,992,004 = 11,994,003.\)

Vậy:

\(2001^{3} - 1998^{3} = 3 \cdot 11,994,003 = 35,982,009.\)

Tương tự:

\(2001^{2} - 1998^{2} = \left(\right. 2001 - 1998 \left.\right) \left(\right. 2001 + 1998 \left.\right) = 3 \cdot 3999 = 11,997.\) \(2001 - 1998 = 3.\)

Vậy:

\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 35,982,009 a + 11,997 b + 3 c . \left(\right. 2 \left.\right)\)

  1. Dùng (1) để thay \(c\)
    Từ (1): \(c = 1 - 11,994,001 a - 3999 b .\)

Thay vào (2):

\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 35,982,009 a + 11,997 b + 3 \left(\right. 1 - 11,994,001 a - 3999 b \left.\right) .\) \(= 35,982,009 a + 11,997 b + 3 - 35,982,003 a - 11,997 b .\)

Rút gọn:

\(= 6 a + 3.\)

  1. Kết luận
    Do \(a\) là số nguyên dương nên

\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 6 a + 3 = 3 \left(\right. 2 a + 1 \left.\right) .\)

Rõ ràng chia hết cho 3 và lớn hơn 3.
\(\Rightarrow f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right)\) là hợp số.


Kết quả cuối cùng:

\(f\left(\right.2001\left.\right)-f\left(\right.1998\left.\right)\) là hợp số.

xin cái tickkk=)