Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Vì 2x^2-6x > 0 với mọi x
=> 2x^2-6x+2020 > 0+2020 với mọi x
=> 2x^2-6x+2020 > 2020 với mọi x
=> A(x) > 0 ( khác 0 )
=> A(x) vô nghiệm
cho h(x) = 0
\(\Rightarrow\) \(2x^4+x^2+1=0\)
\(2x^4+x^2=-1\)
ta có \(x^2\)\(\ge\)0
mà \(2x^4+x^2\)< 0
\(\Rightarrow\)đa thức h(x) k có nghiệm
Vì \(2x^4\ge0\) với \(\forall\)x
\(x^2\ge0\) với \(\forall\) x
\(\Rightarrow2x^4+x^2+1\ge1>0\)
Vậy đa thức H(x) vô nghiệm
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
x4 ≥0 với mọi x
x2 ≥0 với mọi x
⇒ x4+ x2 ≥ 0
⇒ x4 +x2 +1>1
⇒Đa thức trên vô nghiệm
.
f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2
Ta có: x2>=0(với mọi x)
=>x2+1>=1(với mọi x)
=>(x2+1)2>0(với mọi x)
hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm
Vậy f(x) không có nghiệm