\(ax^2+bx+c=0\) với \(\forall\)x

CMR: a=b=c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

ta có: ax2 + bx +c  = 0 vs mọi x

nếu x = 0

=> 0+0+c=0

=> c = 0

nếu x = 1

=> a + b + c =0

=> a + b = 0 ( c = 0) (*)

nếu x = - 1

=> a - b + c = 0

=> a - b =0

Từ (*) => a + b +a-b = 0

=> 2a = 0 => a = 0

=> a + b = 0 => b = 0

=> a = b = c = 0

17 tháng 9 2018

Với \(x_0\ne0:\)

Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)

Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)

12 tháng 4 2018

Ta có P(-1) = a - b + c = 0

Vậy x = -1 là nghiệm của đa thức P(x)

5 tháng 4 2017

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

4 tháng 5 2018

Có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(-1\right).P\left(3\right)=\left(a-b+c\right).\left(9a+3b+c\right)\)

\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left(a-b+c\right)\)

\(=\left(a+b-c\right)^2\ge0\left(ĐPCM\right)\)

16 tháng 6 2020

Với \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)

\(P\left(3\right)=a3^2+3b+c=9a+3b+c\)

từ đó suy ra \(P\left(-1\right).P\left(3\right)=\left(a-b+c\right)\left(9a+3b+c\right)\)

\(=\left(a-b+c\right)\left[\left(8a+4b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)

\(=\left(a-b+c\right)\left(a-b+c\right)=\left(a-b+c\right)^2\ge\)(đpcm)

30 tháng 3 2017

Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi

30 tháng 4 2020

a) \(P\left(-1\right)=a-b+c\)

\(P\left(-2\right)=4a-2b+c\)

b) \(P\left(-1\right)+P\left(-2\right)=5a-3b+2c=0\)

=> P ( - 1) = -P(-2) 

=> P( -1 ) . P (-2) \(=-\left[P\left(-2\right)\right]^2\le0\)

30 tháng 4 2020

a) \(\text{P}\left(-1\right)=\text{a}+\text{b}+\text{c}\)

\(\text{P}\left(-2\right)=4\text{a}-2\text{b}+\text{c} \)

b) \(\text{P}\left(-1\right)+\text{P}\left(-2\right)=5\text{a}+3\text{b}+2\text{c}=0\)

\(\Rightarrow\text{ P}\left(-1\right)=\text{P}\left(-2\right)\)

\(\Rightarrow\text{ P}\left(-1\right).\text{ P}\left(-2\right)=\left[\text{P}\left(-2\right)\right]^2\le0\)

5 tháng 4 2017

a, Có: Q(2) = 4a+2b+c
Q(-1) = a - b + c
=> Q(2) + Q(-1) = 5a+b+2c =0
=> Hai số này trái dấu nhau hoặc cùng bằng 0
=> đpcm
b, Có Q(1) = a+b+c = 0 (gt)
Mà Q(-1) = a -b+c = 0
=> a+b+c=a-b+c
=> b = - b
Điều này chỉ xảy ra khi b=0
Lại có Q(0) = c = 0
=> c = 0
Với b=0 ; c=0 ta có Q(x) = ax^2 = 0 với mọi x
<=> a = 0
Vậy a=b=c=0 ( đpcm )

5 tháng 4 2017

a) Q(2) = a.22 + b.2 + c = 4a + 2b + c

Q(-1) = a.(-1)2 + b.(-1) + c = a - b + c

Cộng vế với vế ta được: Q(2) + Q(-1) = 5a + b + 2c = 0

=> Q(2) = -Q(-1)

=> Q(2).Q(-1) = -Q(-1).Q(-1) = -[Q(-1)]2 \(\le0\) (đpcm)

b) Q(x)=0 với mọi x => Q(0) = 0; Q(1) = 0; Q(-1) = 0

Ta có: Q(0) = a.02 + b.0 + c = 0 => c = 0

Q(1) = a.12 + b.1 + c = a + b + 0 = 0 (1)

Q(-1) = a.(-1)2 + b.(-1) + c = a - b + 0 = 0 (2)

Từ (1) và (2) suy ra Q(1) - Q(-1) = 2b = 0 => b = 0

Thay vào (1) ta có a = 0

Vậy ta có đpcm