Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M(x) = A(x) - 2B(x) + C(x)
\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)
\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)
\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))
\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)
b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:
\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)
\(M\left(x\right)=2.0,25+\frac{3}{16}\)
\(M\left(x\right)=0,5+\frac{3}{16}\)
\(M\left(x\right)=\frac{11}{16}\)
c) Ta có : \(x^2\ge0\)
\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)
Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bài làm:
a) \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)
\(P=2x^4y^5-xy^4+x^3-y^2+4\)
Bậc của đa thức P là 9
b) Ta có:
\(N\left(-1\right)=2.\left(-1\right)+7+\left(-1\right)^3-2.\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)
\(N\left(-1\right)=-2+7-1-2-1+\frac{1}{2}\)
\(N\left(-1\right)=\frac{3}{2}\)
và
\(N\left(2\right)=2.2+7+2^3-2.2^2+2+\frac{1}{2}\)
\(N\left(2\right)=4+7+8-8+2+\frac{1}{2}\)
\(N\left(2\right)=\frac{27}{2}\)
c) Tại \(x=-\frac{1}{2};y=2\)thì giá trị của biểu thức P là:
\(P=2.\left(-\frac{1}{2}\right)^4.2^5-\left(-\frac{1}{2}\right).2^4+\left(-\frac{1}{2}\right)^3-2^2+4\)
\(P=4+8-\frac{1}{8}-4+4\)
\(P=\frac{95}{8}\)
Học tốt!!!!
a, Ta có :
\(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)
\(=2x^4y^5+x^3+4-y^2-xy^4\)
Bậc : 9
b,TH1 : \(N\left(-1\right)=2\left(-1\right)+7+\left(-1\right)^3-2\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)
\(=-2+7-1-2-1+\frac{1}{2}=\frac{3}{2}\)
TH2 : tương tự
c, Thay vào tính thôi.
a) A=2x2+6x-2x2+3x-4x+6+x-2=6x+4
b) x+1=2 => x=1
Tại x=1, A=6*1+4=10
c) A=6x+4=1/2 => x=(1/2-4)/6=-7/12
`!`
`a,A=2x(x+3) -(x+2)(2x-3)+x-2`
`= 2x^2 + 6x-(2x^2 -3x+4x-6)+x-2`
`= 2x^2 +6x+2x^2 +3x-4x+6+x-2`
`= (2x^2-2x^2)+(6x+3x-4x+x)+(6-2)`
`=6x+4`
`b, x+1=2`
`=>x=2-1`
`=>x=1`
`A=6x+4` mà `x=1`
Thì `6x+4=6.1+4=10`
`c,` Ta có :
`6x+4=1/2`
`=> 6x=1/2-4`
`=> 6x= -7/2`
`=>x=-7/2 : 6`
`=>x=-7/2 xx1/6`
`=>x= -7/12`