Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M(x) = A(x) - 2B(x) + C(x)
\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)
\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)
\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))
\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)
b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:
\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)
\(M\left(x\right)=2.0,25+\frac{3}{16}\)
\(M\left(x\right)=0,5+\frac{3}{16}\)
\(M\left(x\right)=\frac{11}{16}\)
c) Ta có : \(x^2\ge0\)
\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)
Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
Thay x = -2 vào biểu thức A, ta có
A = ( - 2 ) 4 - 4 . ( - 2 ) 3 + ( - 2 ) - 3 . ( - 2 ) 2 + 1 = 16 + 32 - 2 - 12 + 1 = 35
Vậy với x = -2 thì A = 35
Chọn đáp án D