Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)
\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)
\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)
\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)
\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)
\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)
\(=[(x-z)[y(x+z+y)+zx]]\)
\(=-(x-z)(yx+yz+y2+zx)\)
\(=-(x-z)(yx+zx+yz+y2)\)
\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)
\(=-(x-z)(y+z)(x+y)\)
Bài 3:
Ta có:
\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Do đó:
\(A=3^4-1=80\)
(x -y)3 - 1 - 3(x -y)(x - y - 1)
= (x -y)3 - 3(x -y)(x - y - 1) - 1
Đặt x - y = t, khi đó ta có:
t3 - 3t. (t - 1) - 1
= t3 - 3t2 + 3t - 1
= (t - 1)3
Thay t = x - y vào (t - 1)3 , ta có: ( x - y - 1)3
Vậy (x -y)3 - 1 - 3(x -y)(x - y - 1) = ( x - y - 1)3
Mình sẽ viết tổng quát A thê này nhé:
\(A=\left(xy^2\right)\left(x^5y^4\right)\left(x^9y^6\right)...\left(x^{4n-3}y^{2n}\right)\)(giả sử A có n nhân tử)
Theo đề bài ta có:
\(\dfrac{n\left(4n-3+1\right)}{2}+\dfrac{n\left(2n+2\right)}{2}=3675\)
\(\Leftrightarrow2n^2-n+n^2+n=3675\)
\(\Leftrightarrow3n^2=3675\Leftrightarrow n^2=1225\Leftrightarrow n=35\)
Bậc cao nhấ của biến x là:\(4.35-3=137\)
cho minh hoi why ban lai co pt do va bieu thuc A vay