Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bạn tự vẽ nha
b) hoành độ giao điểm là nghiệm của pt: \(\frac{1}{2}x^2=4x-8\Leftrightarrow x^2-8x+16=0\Leftrightarrow\left(x-4\right)^2=0\Rightarrow x=4\Rightarrow y=\frac{16}{2}=8\)
=> tọa độ giao điểm là (4;8)
c, gọi pt đt cần tìm là (D") có dạng: y=ax+b
vì (D") // (D) => a=4 => y=4x+b
vì N thuộc (D") => tha x=-1, y=-2 vào ta có: -2=-4+b <=> b=2
=> pt đt (D") cần tìm là: y=4x+2
Bài 2:
a: PTHĐGĐ là:
\(2x^2-3x+1=0\)
=>(2x-1)(x-1)=0
=>x=1 hoặc x=1/2
b: PTHĐGĐ là:
\(2x^2-\dfrac{6x-9}{2}=0\)
\(\Leftrightarrow4x^2-6x+9=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot4\cdot9=36-16\cdot9=-108< 0\)
Do đó: PTVN
Ta có: \(\Delta=16-12=4\)=> ymax=-\(\frac{\Delta}{4a}=-\frac{4}{4}=-1\); xmax=2
=> Đỉnh của Parapon là: (2; -1)
Đồ thị cắt trục hoành tại 2 điểm là nghiệm của PT: x2-4x+3=0
<=> x2-4x+4-1=0 <=> (x-2)2-1=0 <=> (x-2-1)(x-2+1)=0 <=> (x-3)(x-1)=0
=> x1=1 => y1=0
Và x2=3 => y2=0
y x -1 -2 -3 O 1 3 2 3
a) vì \(\left(d\right)\backslash\backslash\left(d'\right)\) \(\Rightarrow\left(d\right)\) có dạng \(\left(d\right):y=-2x+b\)
ta có : \(A\in\left(d\right)\Rightarrow2=-2\left(-3\right)+b\Rightarrow b=-4\)
vậy \(\left(d\right):-2x-4\)
b) gọi \(\left(d_1\right):y=ax+b\)
ta có : \(\left(d_1\right)\perp\left(d_2\right)\Rightarrow a=-1\) \(\Rightarrow\left(d_1\right)y=-x+b\)
ta có : \(A\in\left(d_1\right)\) \(\Rightarrow\) \(2=-\left(-3\right)+b\Leftrightarrow b=-1\)
vậy \(\left(d_1\right):-x-1\)
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
a) Phương trình hoành độ giao điểm của (d₁) và (d₂):
3x - 2 = -2/3 x
⇔ 3x + 2/3 x = 2
⇔ 11/3 x = 2
⇔ x = 2 : 11/3
⇔ x = 6/11
Thay x = 6/11 vào (d₂) ta được:
y = -2/3 . 6/11 = -4/11
Vậy tọa độ giao điểm của (d₁) và (d₂) là A(6/11; -4/11)
b) Gọi (d): y = ax + b
Do (d) // (d₃) nên a = 1
⇒ (d): y = x + b
Do (d) đi qua A(6/11; -4/11) nên thay tọa độ điểm A vào (d) ta có:
6/11 + b = -4/11
⇔ b = -4/11 - 6/11
⇔ b = -10/11
Vậy (d): y = x - 10/11