\(\perp\) AC và CE \(\perp\) AB , Mlà t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔEBC vuông tại E

mà EM là trung tuyến

nên EM=BC/2

ΔDBC vuông tại D

mà DM là trung tuyến

nên DM=BC/2

=>DM=EM

=>ΔMED cân tại M

b: Gọi F là trung điểm của HK

Xét hình thang BHKC có

M,F lần lượtlà trung điểm của BC,HK

nên MF là đường trung bình

=>MF//BH//CK

=>MF vuông góc HK

ΔMED cân tại M

mà MF là đường cao

nên F là trung điểm của ED

FE+EH=FH

FD+DK=FK

mà FE=FD; FH=FK

nên EH=DK

29 tháng 6 2018

à thiếu rồi, vẽ DH vuông góc với BC nữa nha mọi người

a: Vì H và D đối xứng nhau qua AB

nên AH=AD; BH=BD

Xét ΔAHB và ΔADB có

AH=AD

HB=DB

AB chung

Do đó ΔAHB=ΔADB

Suy ra: góc ADB=90 độ và góc HAB=góc DAB

hay BD vuông góc với AD và AB là phân giác của góc HAD(1)

b: Ta có: H và E đối xứng nhau qua AC
nên AH=AE; CH=CE

=>ΔAHC=ΔAEC

=>góc AEC=90 độ và góc HAC=góc EAC

=>AC là phân giác của góc HAE(2)

Ta có: CH+BH=BC

=>BD+CE=BC

c: Từ (1) và (2) suy ra góc DAE=2x90=180 độ

=>D,A,E thẳng hàng

19 tháng 5 2019

bạn tự vẽ hinh nha

1)

Xét tam giác ABC có

hai đường cao BE và CD cắt nhau tại H nên H là trực tâm

do đó \(AH\perp BC\)

mà \(HM\perp BC\)

suy ra AH trùng với HM 

vậy A; H; M thẳng hàng

b) 

dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)

dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)

2)

a)

Xét tam giác ABC và tam giác DEC

có \(\widehat{BAC}=\widehat{CDE}\)

\(\widehat{ACB}\)chung

nên tam giác ABC đồng dạng với tam giác DEC

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)

b)

Xét tam giác ABC

có AD là đường phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)

Từ (1) và (2) suy ra

\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)