Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2x< 7\Leftrightarrow x>-3,5\)
\(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow x^2-3x+2>0\Leftrightarrow x^2-3x+\frac{9}{4}>\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2>\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}>\frac{1}{2}\\x-\frac{3}{2}< -\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
a) \(\left(\frac{5}{7}x-\frac{1}{4}\right)\left(\frac{-3}{4}x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{7}x-\frac{1}{4}=0\\\frac{-3}{4}x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{7}x=\frac{1}{4}\\\frac{-3}{4}x=\frac{-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{20}\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x=\frac{7}{20}\) hoặc x=\(\frac{2}{3}\)
b) \(\left(\frac{4}{5}+x\right)\left(x-\frac{8}{13}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{4}{5}+x=0\\x-\frac{8}{13}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{8}{13}\end{cases}}\)
Vậy x=-4/5 hoặc x=8/13
c) \(\left(2x-\frac{1}{2}\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=3\end{cases}}\)
Vậy x=1/4 hoặc x=3
\(x+\frac{7}{2}x+x=\frac{1}{2}\)
\(2x+\frac{7}{2}x=\frac{1}{2}\)
\(\left(2+\frac{7}{2}\right)x=\frac{1}{2}\)
\(\frac{11}{2}x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{11}{2}\)
\(x=\frac{1}{11}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
Bài 1:
a) Ta có: \(\frac{-5}{8}+x=\frac{4}{9}\)
\(\Leftrightarrow x=\frac{4}{9}-\frac{-5}{8}=\frac{32}{72}-\frac{-45}{72}\)
hay \(x=\frac{77}{72}\)
Vậy: \(x=\frac{77}{72}\)
b) Ta có: \(1\frac{3}{4}\cdot x+1\frac{1}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x+\frac{3}{2}=-\frac{4}{5}\)
\(\Leftrightarrow\frac{7}{4}\cdot x=-\frac{4}{5}-\frac{3}{2}=-\frac{23}{10}\)
\(\Leftrightarrow x=\frac{-23}{10}:\frac{7}{4}=\frac{-23}{10}\cdot\frac{4}{7}\)
hay \(x=-\frac{46}{35}\)
Vậy: \(x=-\frac{46}{35}\)
c) Ta có: \(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}x=\frac{2}{4}\)
\(\Leftrightarrow x=\frac{2}{4}:\frac{3}{4}=\frac{2}{4}\cdot\frac{4}{3}\)
hay \(x=\frac{2}{3}\)
Vậy: \(x=\frac{2}{3}\)
d) Ta có: \(x\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}-\frac{15}{56}=0\)
\(\Leftrightarrow x\cdot\frac{9}{20}=\frac{15}{56}\)
\(\Leftrightarrow x=\frac{15}{56}:\frac{9}{20}=\frac{15}{56}\cdot\frac{20}{9}\)
hay \(x=\frac{25}{42}\)
Vậy: \(x=\frac{25}{42}\)
e) Ta có: \(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\Leftrightarrow\frac{3}{35}-\frac{3}{5}-x=\frac{2}{7}\)
\(\Leftrightarrow\frac{-18}{35}-x=\frac{2}{7}\)
\(\Leftrightarrow-x=\frac{2}{7}-\frac{-18}{35}=\frac{2}{7}+\frac{18}{35}=\frac{4}{5}\)
hay \(x=-\frac{4}{5}\)
Vậy: \(x=-\frac{4}{5}\)
f) Ta có: \(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
\(\Leftrightarrow\frac{1}{7}\cdot\frac{1}{x}=\frac{3}{14}-\frac{3}{7}=\frac{-3}{14}\)
\(\Leftrightarrow\frac{1}{x}=\frac{-3}{14}:\frac{1}{7}=-\frac{3}{14}\cdot7=-\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1\cdot2}{-3}=\frac{2}{-3}=-\frac{2}{3}\)
Vậy: \(x=-\frac{2}{3}\)
g) Ta có: \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{1}{6}\right\}\)
+) P > 0 (x ≠ 0)
Nếu x mang dấu dương => P có 3 thừa số âm => P âm (loại)
Vậy x mang dấu âm vì P sẽ có 4 thừa số âm => P > 0
+) P = 0 <=> x = 0 (dấu âm hay dương gì cũng đc)
+) P < 0 (x ≠ 0)
Nếu x mang dấu âm => P có 4 thừa số âm => P dương (loại)
Vậy x mang dấu dương vì P sẽ có 3 thừa số âm => P < 0
1) Tìm x:
a) \(\frac{11}{12}-\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{5}+x=\frac{1}{4}:\frac{5}{12}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow x=-\frac{7}{20}:\frac{1}{4}=\frac{-7}{5}\)
a) \(\frac{11}{12}-\frac{5}{12}\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{12}.\frac{2}{5}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{1}{6}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{-5}{12}x=\frac{2}{3}-\frac{11}{12}+\frac{1}{6}\)
\(\Leftrightarrow-\frac{5}{12}x=\frac{8}{12}-\frac{11}{12}+\frac{2}{12}=-\frac{1}{12}\)
\(\Leftrightarrow x=\frac{-1}{12}:\left(-\frac{5}{12}\right)=-\frac{1}{12}.\left(-\frac{12}{5}\right)=\frac{1}{5}\)
Vậy x = 1/5
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=-\frac{7}{20}\)
\(\Leftrightarrow x=\frac{1}{4}:\left(-\frac{7}{20}\right)=\frac{1}{4}.\left(-\frac{20}{7}\right)=-\frac{5}{7}\)
Vậy x = -5/7
c) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
d) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\end{matrix}\right.\)
Ta thấy x <-1 và x >2 vô lí
Do đó: x >-1 và x <2
Vậy -1 < x <2
e) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy x > 2 hoặc x < -2/3
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
a) \(\dfrac{x+5}{5}+\dfrac{x+5}{7}+\dfrac{x+5}{9}=\dfrac{x+5}{11}+\dfrac{x+5}{13}\)
\(\Rightarrow\left(x+5\right)\left(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}\right)=\left(x+5\right)\left(\dfrac{1}{11}+\dfrac{1}{13}\right)\)
\(\Rightarrow\dfrac{143}{315}\left(x+5\right)=\dfrac{24}{143}\left(x+5\right)\)
\(\Rightarrow\dfrac{143}{315}\left(x+5\right)-\dfrac{24}{143}\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(\dfrac{143}{315}-\dfrac{24}{143}\right)=0\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
b) \(\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)
\(\Rightarrow\)\(3+\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=3+\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)
\(\Rightarrow\)\(1+\dfrac{x+2}{100}+1+\dfrac{x+3}{99}+1+\dfrac{x+4}{98}=1+\dfrac{x+5}{97}+1+\dfrac{x+6}{96}+1+\dfrac{x+7}{95}\)
\(\Rightarrow\)\(\dfrac{100}{100}+\dfrac{x+2}{100}+\dfrac{99}{99}+\dfrac{x+3}{99}+\dfrac{98}{98}+\dfrac{x+4}{98}=\dfrac{97}{97}+\dfrac{x+5}{97}+\dfrac{96}{96}+\dfrac{x+6}{96}+\dfrac{95}{95}+\dfrac{x+7}{95}\)\(\Rightarrow\)\(\dfrac{x+102}{100}+\dfrac{x+102}{99}+\dfrac{x+102}{98}=\dfrac{x+102}{97}+\dfrac{x+102}{96}+\dfrac{x+102}{95}\)
\(\Rightarrow\)\(\left(x+102\right)\left(\dfrac{1}{100}+\dfrac{1}{99}+\dfrac{1}{98}\right)=\left(x+102\right)\left(\dfrac{1}{97}+\dfrac{1}{96}+\dfrac{1}{95}\right)\)
\(\Rightarrow\)\(x+102=0\)
\(\Rightarrow x=-102\)
c) \(\left(x+2\right)-\left(x+3\right)>0\)
\(\Rightarrow x+2-x-3>0\Rightarrow-1>0\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)\left(x+\dfrac{7}{3}\right)\ge0\)
TH1: \(\left\{{}\begin{matrix}x-5\ge0\\x+\dfrac{7}{3}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge5\\x\ge\dfrac{-7}{3}\end{matrix}\right.\)
\(\Rightarrow x\ge\dfrac{-7}{3}\)
TH2: \(\left\{{}\begin{matrix}x-5\le0\\x+\dfrac{7}{3}\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le5\\x\le\dfrac{-7}{3}\end{matrix}\right.\)
\(\Rightarrow x\le5\)
TH3: \(\left[{}\begin{matrix}x-5=0\\x+\dfrac{7}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)