Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) vì tam giác BEC vuông tại E=> EBC=90 độ-ECB
vì ECB+BCD= 90 độ( AC vuông góc với CD)
=> BCD=90 độ-ECB
xét tam giác HMB và tam giác CMD có
MB=MC(gt)
HMB=DMC(đối đỉnh)
HBM=MCD(= 90 độ-ECB)
=> tam giác HMB= tam giác DMC(gcg)
=> BH=CD (hai cạnh tương ứng)
b) từ tam giác HMB= tam giác DMC=> HM=DM( hai cạnh tương ứng)
=> M là trung điểm của HD
c) hình như nhầm một chút rồi, phải là AM,HO,DI giao nhau
vì M là trung điểm của HD=> AM là trung tuyến
vì O là trung điểm của AD=> HO là trung tuyến
vì I là trung điểm của AH=> DI là trung tuyến
=> AM, HO,DI giao nhau tại một điểm ( trong tam giác, 3 đường trung tuyến giao nhau tại một điểm)
ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017
a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:
AH là cạnh chung
AB = AC ( \(\Delta ABC\)cân tại A)
BH = CH ( H là trung điểm của BC)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)
Xét \(\Delta ABC\)cân tại A ta có:
AH là đường trung tuyến ( H là trung điểm của BC)
\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)
\(\Rightarrow AH⊥BC\)tại H.
b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:
BH = CH ( H là trung điểm của BC)
\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)
\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)
c) Ta có:
AB = AC (\(\Delta ABC\)cân tại A)
BD = CE ( cmt)
\(\Rightarrow AB-BD=AC-CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)
Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Nên \(\widehat{ADE}=\widehat{ABC}\)
Mặt khác 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)DE // BC.
d) Nối A với I.
Ta có:
\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)
\(\Rightarrow HE=EN+ME\)
\(\Rightarrow HE=MN\)
Xét \(\Delta AEN\)vuông tại E ta có:
\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)
\(\Rightarrow AN^2=AD^2+HM^2\)
\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)
\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)
\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)
\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AI^2-NI^2\)
\(\Rightarrow AI^2=AN^2+NI^2\)
\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)
\(\Rightarrow IN⊥AN\)tại N.
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
a) Vì AH là đường cao của tam giác ABC (gt)
=> AH vuông góc với BC (định nghĩa)
=> AH < AC (quan hệ giữa đường vuông góc và đường xiên)
b) Xét tam giác HMC và tam giác DMA, có:
+ HM = DM (M là trung điểm HD)
+ CM = AM (M là trung điểm AC)
+ góc HMC = góc DMA (đối đỉnh
=> tam giác HMC = tam giác DMA (cgc)
c) Vì AM = CM (M là trung điểm AC)
Mà AM + CM = AC
=> AM = 1/2 AC (đpcm)
Xét hai tam giác vuông ΔABH ΔABH và ΔACH ΔACH:
Ta có: AH cạnh chung
AB=AC
Vậy ΔABH ΔABH = ΔACH ΔACH (c.g.c)
AH là đường cao đồng thời đường trung tuyến của ΔABC ΔABC cân tại A (AB=AC)
Vậy HC= HB hay H là trung điểm BC
2. BH = HC = BC2= 122 = 6BC2 = 122 = 6 cm
Áp dụng định lí Py-ta-go:
AH = √AB2 − HB2= √102 − 62 = 8AH = AB2− HB2 = 102− 62 = 8 cm
3. Ta có: AK là đường cao ΔAEH ΔAEH
Mà KE = KH nên AK cũng là đường trung tuyến ΔAEH ΔAEH
Vậy ΔAEH ΔAEH cân tại A
Nên AE=AH (1)
4. Ta có: AI là đường cao ΔADH ΔADH
Mà IH = ID nên AI cũng là đường trung tuyến ΔADH ΔADH
Vậy ΔAEH ΔAEH cân tại A
Nên AD = AH (2)
Từ (1)(2) Suy ra: AE=AD hay ΔAED ΔAED cân tại A
5. Xét ΔAEF ΔAEF và ΔADF ΔADF:
Ta có: AF cạnh chung
AE=AD
\(\widehat{AEF}\)=\(\widehat{ADF}\) \(\widehat{AEF}\)=\(\widehat{ADF}\)
Vậy ΔAEFΔAEF =ΔADFΔADF (c.g.c)
Nên EF = FD; AF là đường trung tuyến ΔAED ΔAED cân nên đồng thời đường cao nên AF vuông góc ΔAED ΔAED (3)
AF vuông góc BC (4)
Từ (3)(4) Suy ra: DE//BC
6. Để A là trung điểm ED thì ΔABC ΔABC vuông cân tại A
Giả sử ΔABC ΔABC vuông cân tại A nên AH=HB (đường cao đồng thời trung tuyến) IA=IB (đường cao đồng thời trung tuyến)
Tứ giác ADBH có hai đường chéo cắt nhau tại trung điểm mổi đường nên ADBH là hình bình hành
CM tương tự cho tứ giác AECH
Mà C,H,B thẳng hàng và HC=HB nên E,A,D thẳng hàng và A là trung điểm ED
bn tham khảo ở đây nha:http://text.123doc.org/document/658748-6-bai-toan-hinh-4-de-thi-ki-i-toan-8.htm