Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\bigtriangleup ABC\) vuông tại A, ta có:
AB2 = BC2 - AC2 (Py-ta-go)
AB2 = 102 - (\(\sqrt{75}\))2 = 25
=> AB = \(\sqrt{25}=5\) cm
Vậy .................
3 5 B A C E D
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )
\(\Rightarrow3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )
b ) Xét 2 \(\Delta\)vuông ABE và DBE có :
\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)
\(AB=DB\left(gt\right)\)
BE : cạnh chung
Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)
Hay BE là tia phân giác của \(\widehat{ABC}\)
c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)
\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )
+ Xét \(\Delta DEC\)vuông tại D (gt) có :
Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )
\(\Rightarrow EC>DE\)
Mà \(DE=AE\left(cmt\right)\)
\(\Rightarrow EC>AE\)
Hay \(AE< EC\)
d ) Vì \(AB=DB\left(gt\right)\)
\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)
+ Vì \(AE=DE\left(cmt\right)\)
\(\Rightarrow E\)thuộc đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)
Chúc bạn học tốt !!!
a)\(\Delta ABC\) có: góc BAC+góc ABC + góc ACB = 180 độ
góc ACB=180 độ -90 độ-75 độ
góc ACB = 15 độ
mình chỉ biết làm ý a thôi
LÀm nhanh ý b giúp nhé
A B C x E
Giải:
a) Xét \(\Delta BAC,\Delta ECA\) có:
\(AB=CE\left(gt\right)\)
\(\widehat{BAC}=\widehat{ECA}\left(=90^o\right)\)
\(AC\): cạnh chung
\(\Rightarrow\Delta BAC=\Delta ECA\left(c-g-c\right)\)
\(\Rightarrow BC=AE\) ( cạnh t/ứng ) ( đpcm )
\(\Rightarrow\widehat{BCA}=\widehat{EAC}\) ( góc t/ứng )
Mà 2 góc trên ở vị trí so le trong nên BC // AE ( đpcm )
b) Ta có: \(\widehat{EAC}+\widehat{ECA}=\widehat{AEx}\) ( góc ngoài \(\Delta ECA\) )
\(\Rightarrow\widehat{EAC}+90^o=120^o\)
\(\Rightarrow\widehat{EAC}=30^o\)
Mà \(\widehat{BCA}=\widehat{EAC}\Rightarrow\widehat{BCA}=30^o\)
Xét \(\Delta ABC\) có: \(\widehat{BCA}+\widehat{ABC}=90^o\) ( do \(\widehat{A}=90^o\) )
\(\Rightarrow\widehat{ABC}=60^o\) ( do \(\widehat{BCA}=30^o\) )
Vậy...