Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha:
xét tam giác ABM có : D là trung điểm AB (gt)
F là trung điểm AM (gt )
\(\Rightarrow\)DF là ĐTB tam giác ABM
\(\Rightarrow\)DF // BM \(\Leftrightarrow\)DF // BC (1)
xét tam giác ABC có : D trung điểm AB
E trung điểm AC
\(\Rightarrow\)ED là ĐTB tam giác ABC
\(\Rightarrow\)ED // MB \(\Leftrightarrow\) ED // BC (2)
từ (1) và (2) \(\Rightarrow\)D , E , F thẳng hàng
a) d là đường trung trực của BC nên B và C đối xứng qua d D đối xứng với A qua d nên đường thẳng đối xứng với AB qua d là DC do AB và CD đối xứng qua d nên AC=CD.
c) ta có đoạn thẳng đối xứng với AC qua d là DB vì d là đường trung trực của AD và BC nên AD vuông góc với d và BC vuông với d vậy AD//BC, do đó ABCD là hình thanh do AC đối xứng với BD qua d nên AC=DB vậy hình thanh ABCD có hai đường chéo bằng nhau nên là hình thang cân
Câu b mk ko bt nha
A B C D E F M
a) Tam giác ABM có: DA = DB; FA = FM
=> DF là đường trung bình
=> DF // BM ; DF = 1/ BM (1)
Tam giác ACM có: EA = EC; FA = FM
=> EF là dường trung bình
=> EF // MC ; EF = 1/2 MC (2)
Từ (1) và (2) suy ra: DF, EF // BC =>D,E,F thẳng hàng
DF = FE => F là trung điểm DE
Theo bài ra :
BC2=AC2+AB2
=> (BD+DC)2=(AF+FC)2+(AE+EB)2
=> BD2+DC2+2BD.DC = (AF2+FC2+2AF.FC)+(AE2+EB2+2AE.EB)
=> (DE2+EB2)+(FC2+FD2)+2BD.DC=(AF2+EB2)+(FC2+AE2) + 2AF.FC+2AE.EB
=> BD.CD = AF.FC+AE.BE
a) Xét tam giác ACB đỉnh C ta có :
+ E là trung điểm AC
+ M là trung điểm BC
=> EM là đường trung bình của tam giác
=> EM=1/2 AB = AD=BD (1)( D là trung điểm của AB)
Xét tam giác ABC đỉnh C ta có :
+ M là trung điểm của BC
+ D là trung điểm AB
=> MD là trung bình của tam giác ABC
=> MD = 1/2 AC = AE = EC (2) ( E là trung điểm AC)
Xét tứ giác AEMD có :
AD = EM (từ 1)
DM = AE ( từ 2)
=> Tứ giác AEMD là hình bình hành
Lại có : F là trung điểm của đường chéo AM
=> F là giao điểm của đường chéo AM và DE
=> D,E,F thẳng hàng
b) Vì tứ giác AEMD là hình bình hành ( cm ở câu a)
Mà F lại là trung điểm của AM
=> F là trung điểm DE .
a: Xét ΔABM có
D là trung điểm của AB
F là trung điểm của AM
Do đó: DF là đường trung bình
=>DF//BM và DF=BM/2
=>DF//BC
Xét ΔAMC có
F là trung điểm của AM
E là trung điểm của AC
Do đó; FE là đường trung bình
=>FE//CM và FE=CM/2
=>FE//BC
Ta có: DF//BC
EF//BC
mà DF,FE có điểm chung là F
nên D,F,E thẳng hàng
b: Ta có: FD=BM/2
FE=MC/2
mà BM=CM
nên FD=FE
mà D,F,E thẳng hàng
nên F là trung điểm của DE