
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ΔABC~ΔMNP
=>\(\hat{B}=\hat{N};\hat{BAC}=\hat{NMP}\)
ta có: \(\hat{BAD}=\frac12\cdot\hat{BAC}\) (AD là phân giác của góc BAC)
\(\hat{NME}=\frac12\cdot\hat{NMP}\) (ME là phân giác của góc NMP)
mà \(\hat{BAC}=\hat{NMP}\)
nên \(\hat{BAD}=\hat{NME}\)
Xét ΔBAD và ΔNME có
\(\hat{BAD}=\hat{NME}\)
\(\hat{B}=\hat{N}\)
Do đó: ΔBAD~ΔNME
=>\(\frac{AD}{ME}=\frac{BA}{MN}=k\)

Ta có Δ ABC ∼ Δ A'B'C'. Khi đó tỉ số đồng dạng là
A'B'/AB = A'C'/AC = B'C'/BC = 2/4 = 2,5/5 = 3/6 = 1/2.

Ta có tỉ số chu vi bằng tỉ số đồng dạng nên tam có: P/P' = k = 5/9 ⇒ 9P - 5P' = 0
Mà
Chọn đáp án C.

Ta có: Δ ABC đồng dạng Δ A'B'C'
Khi đó
Mà PA'B'C' - PABC = 30cm.
Suy ra
Vậy chu vi của Δ ABC là 20cm, chu vi của Δ A'B'C' là 50cm.
Chọn đáp án A.