Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có :
BI là phân giác ABC
=> ABI = CBI = \(\frac{1}{2}AbC\)
CI là phân giác ACB
=> ACI = BCI = \(\frac{1}{2}ACB\)
Xét ∆ABC có :
A + ABC + ACB = 180°
=> ACB + ABC = 180° - 50° = 130°
=> IBC + ICB = \(\frac{1}{2}\left(ABC+ACB\right)\)
= 65°
Xét ∆BIC có :
BIC + ICB + IBC = 180°
=> BIC = 180° - 65° = 115°
Góc ngoài tại đỉnh B = 180° - ABC
Góc ngoài tại đỉnh C = 180° - ACB
Góc ngoài tại đỉnh B + Góc ngoài tại đỉnh C = 180° - ABC + 180° - ACB
= 360° - ( ABC + ACB ) = 230°
Vì BK là phân giác góc ngoài tại đỉnh B
=> CBK = \(\frac{1}{2}\)góc ngoài tại đỉnh B
Vì CK là phân giác góc ngoài tại đỉnh C
=> BCK = \(\frac{1}{2}\)góc ngoài tại đỉnh C
=> CBK + BCK = \(\frac{230°}{2}\)= 115°
Xét ∆BCK có :
CBK + BCK + BKC = 180°
=> BKC = 180° - 115° = 65°
Ta có : ABC + Góc ngoài đỉnh B = 180°
Ta có :
IBC + KBC = \(\frac{180°}{2}\)= 90° = IBK
Chứng minh tương tự ta có : ICK = 90°
b) Ta có :
BIC + DIC = 180°
=> DIC = 180° - 115° = 65°
Ta có :
ICK + ICD = 180° ( kề bù )
=> ICD = 180° - 90° = 90°
Xét ∆DIC có :
ICD + IDC + DIC = 180°
=> IDC = 180° - 90° - 65° = 25°
Hay BDC = 25°
c) Ta có :
B= 2C
Mà B + C = 130°
=> 2C + C = 130°
=> 3C = 130°
=> C ≈ \(\frac{130}{3}\:\approx43°\)
=> B = 86°
![](https://rs.olm.vn/images/avt/0.png?1311)
O A C B D
Cm: a) Xét t/giác OAD và t/giác OCB
có: OA = OC (gt)
\(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)
OD = OB (gt)
=> t/giác OAD = t/giác OCD (c.g.c)
=> AD = BC (2 cạnh t/ứng)
Tương tự, xét t/giác AOB và t/giác COD
có: OA = OC (gt)
\(\widehat{AOB}=\widehat{COD}\) (Đối đỉnh)
OB = OD (gt)
=> t/giác AOB = t/giác COD (c.g.c)
=> AB = DC (2 cạnh t/ứng)
b) Xét t/giác ADC và t/giác CAB
có: AC : chung
AD = BC (cmt)
AB = DC (cmt)
=> t/giác ADC = t/giác CAB (c.c.c)
=> \(\widehat{CDA}=\widehat{CBA}\)(2 góc t/ứng)
Xét t/giác ADB và t/giác CBD
có: AB = CD (cmt)
AD = CB (cmt)
BD : chung
=> t/giác ADB = t/giác CBD (c.c.c)
=> \(\widehat{BAD}=\widehat{BCD}\)(2 góc t/ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác ABE và tam giác ADE có : AE chung
AB = AD (Gt)
^DAE = ^BAE do AE là pg của ^BAC (gt)
=> tam giác ABE = tam giác ADE (c-g-c)
b, AB = AD (gt)
=> tam giác ABD cân tại A (đn)
c, đề sai
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 trc
Hình bác tự vẽ đc nhỉ
a) +) Xét \(\Delta\)ABD và \(\Delta\)ABC có
AB : cạnh chung
\(\widehat{DAB}=\widehat{BAC}\left(=90^o\right)\)
AD = AC (gt)
=> \(\Delta\) ABD = \(\Delta\) ABC (c-g-c )
b) Theo câu a ta có \(\Delta\) ABD = \(\Delta\) ABC
=> BD = BC ( 2 góc tương ứng )
+) Xét \(\Delta\) BDC có
\(\hept{\begin{cases}BD=BC\left(cmt\right)\\\widehat{C}=60^o\end{cases}}\)
=> \(\Delta\) BDC đều
c) +) Xét \(\Delta\) ABC vuông tại A
\(\Rightarrow\widehat{C}+\widehat{ABC}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta\) ABC vuông tại A có \(\widehat{ABC}=30^o\)
=> \(AC=\frac{1}{2}BC\) ( tính chất trong 1 tam giác vuông có 1 góc bằng 30 độ thì cạnh góc vuông đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
+) Xét \(\Delta\)ABC vuông tại A
\(\Rightarrow BC^2=AC^2+AB^2\) ( định lí Py-ta-go)
\(\Rightarrow AB^2=BC^2-AC^2\)
Bạn tự làm nốt nhá
Cau kia đang bận k giúp đc r
![](https://rs.olm.vn/images/avt/0.png?1311)
#Tự vẽ hình nhé bạn#k mình nha#Thanks#
a ) Xét \(\Delta\)ABC và \(\Delta\)DMC có :
- AC = CD ( giả thiết )
- BC = CM ( giả thiết )
- Góc BCA = Góc MCD ( đối đỉnh )
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DMC ( c - g - c )
b ) Ta có : \(\Delta\)ABC = \(\Delta\)DMC ( chứng minh trên )
\(\Rightarrow\)\(BÂC\) = Góc MDC ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên\(AB // MD\)
c ) Xét \(\Delta\)IAC và \(\Delta\) NDCcó :
- Góc ICA = Góc NCD ( đối đỉnh )
- AC = CD ( giả thiết )
- BÂC = Góc CDN ( chứng minh trên )
\(\Rightarrow\)\(\Delta\)IAC = \(\Delta\)NDC ( g - c - g )
\(\Rightarrow\)IA = ND ( 2 cạnh tương ứng )
Ta có : IB + AI = AB nên IB = AB - AI
Ta lại có : MN + ND = MD nên MN = MD - ND
Mà AB = MD và AI = ND
\(\Rightarrow\)IB = MN
![](https://rs.olm.vn/images/avt/0.png?1311)
B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )
CHÚ THÍCH: HÌNH TỰ VẼ :))
\(\widehat{ABC}\)+\(\widehat{BAC}\)+\(\widehat{BCA}\)=180\(\) độ
=>\(\widehat{ABC}\)+\(\widehat{BCA}\)=180-\(\widehat{BAC}\)
<=>\(\widehat{BAC}\)+\(\widehat{BCA}\)=180-80=100
mà BI là phân giác góc ABC
AC là phân giác góc BCA
=>\(\widehat{IBC}\)+\(\widehat{BCI}\)=\(\dfrac{1}{2}\)(\(\widehat{ABC}\)+\(\widehat{BCA}\))
=>\(\widehat{IBC}\)+\(\widehat{BCI}\)=\(\dfrac{1}{2}\)100=50
TA CÓ \(\widehat{BIC}\)+\(\widehat{IBC}\)+\(\widehat{BCI}\)=180
=>\(\widehat{BIC}\)=180-(\(\widehat{IBC}\)+\(\widehat{BCI}\))
=>\(\widehat{BIC}\)=180-50=130
Vậy \(\widehat{BIC}\)=130 độ