Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại đây :
Câu hỏi của Nguyễn Thị Khánh Huyền - Toán lớp 7 - Học toán với OnlineMath
Ở ĐÓ SAI NHA ANH NGUYỄN CÔNG TỈNH!!
ANH VẼ HÌNH RA LÀ BT NGAY MAK.
NHỜ CÁC THẦY CÔ VÀ CÁC ANH CHỊ GIẢI HỘ EM CÁI!
Vẽ tam giác MAD vuông cân tại A ( D và M nằm khác phía đối với AC), nối D với C
Bài làm
ta có: tam giác MAD vuông cân tại A
=> MA = AD ( tính chất tam giác vuông cân) => MA2 = AD2
góc AMD = góc ADM = 45 độ
mà \(\widehat{AMD}+\widehat{DMC}=\widehat{AMC}\)
thay số: 45 độ + góc DMC = 135 độ
góc DMC = 135 độ - 45 độ
góc DMC = 90 độ
\(\Rightarrow DM\perp MC⋮M\) ( định lí vuông góc)
Xét tam giác MAD vuông cân tại A
có: \(MA^2+AD^2=DM^2\left(py-ta-go\right)\)
\(\Rightarrow MA^2+MA^2=DM^2\)
2.MA2 = DM2
Xét tam giác DCM vuông tại M
có: \(DM^2+MC^2=CD^2\left(py-ta-go\right)\)
=> 2.MA2 + MC = CD2
\(\Rightarrow MA^2=\frac{CD^2-MC^2}{2}\) (1)
ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\left(=\widehat{BAC}=90^0\right)\)
và \(\widehat{MAC}+\widehat{CAD}=90^0\left(=\widehat{MAD}=90^0\right)\)
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{MAC}+\widehat{CAD}\left(=90^0\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAD}\)
Xét tam giác ABM và tam giác ACD
có: AB = AC (gt)
góc BAM = góc CAD (cmt)
AM = AD ( tam giác MAD vuông cân tại A)
\(\Rightarrow\Delta ABM=\Delta ACD\left(c-g-c\right)\)
=> MB = CD ( 2 cạnh tương ứng)
=> MB2 = CD2 (2)
Từ (1);(2) \(\Rightarrow MA^2=\frac{MB^2-MC^2}{2}\)
hình như t cũng làm bài này r mà chả nhớ j hết, nhớ sơ sơ
là vì vuông tại A nên AB2+AC2=BC
rồi cân nên AB=AC
rồi thay vào
rồi xét 2 tam giác j đó
A B C D E M N 1 2 3 1 2 3 1 2
Vẽ 2 tia phân giác của ^MCB và ^MBC, ta được: ^B1=^B2=^B3=1/3^ABC và ^C1=^C2=^C3=1/3^ACB.
Ta có: ^C1=1/3^ACB => ^C2+^C3=1-1/3^ACB=2/3^ACB => ^MCB=2/3^ACB (1)
Xét tam giác ABC: ^BAC=900 => ^ABC+^ACB=900 => ^ACB=900-^ABC=900-300=600=> ^ACB=600.
Thay ^ACB=600 vào (1), ta có: ^MCB=2/3.600=400.
Tương tự: ^B1=1/3^ABC => ^B2+^B3=2/3^ABC => ^MBC=2/3^ABC (2)
Thay ^ABC=300 vào (2), ta có: ^MBC=2/3.300=200.
Xét tam giác CMB: ^CMB=1800-(^MCB+^MBC)=1800-(400+200)=1800-600=1200 => ^CMB=1200.
Mà ^CMB=^DME (Đối đỉnh) => ^DME=1200.
N là giao của 2 đường phân giác của ^MBC và ^MCB trong tam giác CMB => MN là phân giác ^CMB.
=> ^M1=^M2=^CMB/2=1200/2=600 (3)
Lại có: ^CDM là góc ngoài của tam giác ADB => ^CDM=^DAB+^ABD=900+1/3ABC.
^ABC=300=>1/3^ABC=100. Thay cào biểu thức trên: ^CDM=900+100=1000.
^C1=1/3^ACB => ^C1=1/3.600=200. Xét tam giác DCM: ^DMC=1800-(^CDM+^C1)=1800-(1000+200)=600 => ^DMC=600 (4)
Từ (3) và (4) => ^M1=^M2=^DMC=600, mà ^EMB=^DMC => ^M2=^EMB=600.
Xét tam giác CDM và tam giác CNM có:
^C1=^C2=1/3^ACB
Cạnh CM chung => Tam giác CDM = Tam giác CNM (g.c.g)
^DMC=^M1=600
=> DM=NM (2 cạnh tương ứng) (5)
Xét tam giác BEM và tam giác BNM có:
^B1=^B2=1/3^ABC
Cạnh BM chung => Tam giác BEM = Tam giác BNM (g.c.g)
^EMB=^M2=600
=> EM=NM (2 cạnh tương ứng) (6)
Từ (5) và (6) => DM=EM=NM => Tam giác MDE cân tại M => ^MDE=^MED=(1800-^DME)/2
Thay ^DME=1200 vào biểu thức trên, ta có: ^MDE=^MED=(1800-1200)/2=600/2=300.
Vậy các góc của tam giác MDE là: ^DME=1200, ^MDE=^MED=300.
Ai hiểu rồi thì k nha.
Bạn tự vẽ hình nhé!
a)Xét tam giác BAD có góc BAD=60o=1/2.BAC=1/2.120o
suy ra đc AC là phân giác góc ngoài của tam giác BAD( góc ngoài của BAD tại đỉnh A=120o)
mà AE,BE.DE đồng quy tại một điểm
BE là phân giác trong của tam giác ABD
suy ra DE là phân giác góc ngoài
b) CM tương tự câu a, ta sẽ có DF cũng là phân giác góc ngoài của tam giác ACE
FDA+ADE=1/2.BDA+1/2.CDA=1/2(BDA+CDA)=1/2.180o=90o
còn câu cuối mk chưa nghĩ ra, khi nào có gửi bạn sau nha!
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I