Δ ABC cân tại A có góc A bằng 96 độ . Lấy M nằm trong ΔAB...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

Tham khảo tại đây :

Câu hỏi của Nguyễn Thị Khánh Huyền - Toán lớp 7 - Học toán với OnlineMath

18 tháng 12 2018

Ở ĐÓ SAI NHA ANH NGUYỄN CÔNG TỈNH!!

ANH VẼ HÌNH RA LÀ BT NGAY MAK.

NHỜ CÁC THẦY CÔ VÀ CÁC ANH CHỊ GIẢI HỘ EM CÁI!

21 tháng 8 2018

A B C M D 135

21 tháng 8 2018

Vẽ tam giác MAD vuông cân tại A ( D và M nằm khác phía đối với AC), nối D với C

Bài làm

ta có: tam giác MAD vuông cân tại A

=> MA = AD ( tính chất tam giác vuông cân) => MA2 = AD2

 góc AMD = góc ADM = 45 độ

mà \(\widehat{AMD}+\widehat{DMC}=\widehat{AMC}\)

thay số: 45 độ + góc DMC = 135 độ

góc DMC = 135 độ - 45 độ

góc DMC = 90 độ

\(\Rightarrow DM\perp MC⋮M\) ( định lí vuông góc)

Xét tam giác MAD vuông cân tại A

có: \(MA^2+AD^2=DM^2\left(py-ta-go\right)\)

\(\Rightarrow MA^2+MA^2=DM^2\)

2.MA2 = DM2

Xét tam giác DCM vuông tại M

có: \(DM^2+MC^2=CD^2\left(py-ta-go\right)\)

=> 2.MA2 + MC = CD2

\(\Rightarrow MA^2=\frac{CD^2-MC^2}{2}\) (1)

ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\left(=\widehat{BAC}=90^0\right)\)

và \(\widehat{MAC}+\widehat{CAD}=90^0\left(=\widehat{MAD}=90^0\right)\)

\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{MAC}+\widehat{CAD}\left(=90^0\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAD}\)

Xét tam giác ABM và tam giác ACD

có: AB = AC (gt)

góc BAM = góc CAD (cmt)

AM = AD ( tam giác MAD vuông cân tại A)

\(\Rightarrow\Delta ABM=\Delta ACD\left(c-g-c\right)\)

=> MB = CD ( 2 cạnh tương ứng)

=> MB2 = CD2 (2)

Từ (1);(2) \(\Rightarrow MA^2=\frac{MB^2-MC^2}{2}\)

8 tháng 1 2016

hình như t cũng làm bài này r mà chả nhớ j hết, nhớ sơ sơ

là vì vuông tại A nên AB2+AC2=BC

rồi cân nên AB=AC

rồi thay vào

rồi xét 2 tam giác j đó

22 tháng 5 2017

tao deo hieu

23 tháng 5 2017

A B C D E M N 1 2 3 1 2 3 1 2

Vẽ 2 tia phân giác của ^MCB và ^MBC, ta được: ^B1=^B2=^B3=1/3^ABC và ^C1=^C2=^C3=1/3^ACB.

Ta có: ^C1=1/3^ACB => ^C2+^C3=1-1/3^ACB=2/3^ACB =>  ^MCB=2/3^ACB (1)

Xét tam giác ABC: ^BAC=900 => ^ABC+^ACB=900 => ^ACB=900-^ABC=900-300=600=> ^ACB=600.

Thay ^ACB=600 vào (1), ta có: ^MCB=2/3.600=400.

Tương tự: ^B1=1/3^ABC => ^B2+^B3=2/3^ABC => ^MBC=2/3^ABC (2)

Thay ^ABC=300 vào (2), ta có: ^MBC=2/3.300=200.

Xét tam giác CMB: ^CMB=1800-(^MCB+^MBC)=1800-(400+200)=1800-600=1200 => ^CMB=1200.

Mà ^CMB=^DME (Đối đỉnh) => ^DME=1200.

N là giao của 2 đường phân giác của ^MBC và ^MCB trong tam giác CMB => MN là phân giác ^CMB.

=> ^M1=^M2=^CMB/2=1200/2=600 (3)

Lại có: ^CDM là góc ngoài của tam giác ADB => ^CDM=^DAB+^ABD=900+1/3ABC.

^ABC=300=>1/3^ABC=100. Thay cào biểu thức trên: ^CDM=900+100=1000.

^C1=1/3^ACB => ^C1=1/3.600=200. Xét tam giác DCM: ^DMC=1800-(^CDM+^C1)=1800-(1000+200)=60=> ^DMC=60(4)

Từ (3) và (4) => ^M1=^M2=^DMC=600, mà ^EMB=^DMC => ^M2=^EMB=600.

Xét tam giác CDM và tam giác CNM có: 

^C1=^C2=1/3^ACB

Cạnh CM chung      => Tam giác CDM = Tam giác CNM (g.c.g)

^DMC=^M1=600

=> DM=NM (2 cạnh tương ứng) (5)

Xét tam giác BEM và tam giác BNM có:

^B1=^B2=1/3^ABC

Cạnh BM chung       => Tam giác BEM = Tam giác BNM (g.c.g) 

^EMB=^M2=600

=> EM=NM (2 cạnh tương ứng) (6)

Từ (5) và (6) => DM=EM=NM => Tam giác MDE cân tại M => ^MDE=^MED=(1800-^DME)/2

Thay ^DME=1200 vào biểu thức trên, ta có: ^MDE=^MED=(1800-1200)/2=600/2=300.

Vậy các góc của tam giác MDE là: ^DME=1200, ^MDE=^MED=300.

Ai hiểu rồi thì k nha.

26 tháng 3 2020

Bạn tự vẽ hình nhé!

a)Xét tam giác BAD có góc BAD=60o=1/2.BAC=1/2.120o

suy ra đc AC là phân giác góc ngoài của tam giác BAD( góc ngoài của BAD tại đỉnh A=120o)

mà AE,BE.DE đồng quy tại một điểm

BE là phân giác trong của tam giác ABD

suy ra DE là phân giác góc ngoài

b) CM tương tự câu a, ta sẽ có DF cũng là phân giác góc ngoài của tam giác ACE

FDA+ADE=1/2.BDA+1/2.CDA=1/2(BDA+CDA)=1/2.180o=90o

còn câu cuối mk chưa nghĩ ra, khi nào có gửi bạn sau nha!

13 tháng 9 2016

hỏi troll nhau à

18 tháng 9 2017

chơi khăm

19 tháng 4 2016

a)

xét tam giác ABM và tam giác ACM có:
AB=AC(gt)

MB=MC(gt)

B=C(gt)

suy ra tam giác ABM=ACM(c.g.c)

b)

xét 2 tam giác vuông AHC và AKB có:

AB=AC(gt)

A(chung)
suy ra tam giác AHB=AKB(CH-GN)

suy ra AH=AK

AB=AC

BH=AB=AH

CK=AC-AK

từ tất cả nh điều trên suy ra BH=CK

c)

xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)

suy ra tam giác KBC=ACB(c.g.c)

suy ra KBC=HCB suy ra tam giác IBC cân tại I

19 tháng 4 2016

A B C H K I