K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{ABH}=\widehat{HBC}=\dfrac{\widehat{ABC}}{2}\)(BH là tia phân giác của \(\widehat{ABC}\))

\(\widehat{ACK}=\widehat{BCK}=\dfrac{\widehat{ACB}}{2}\)(CK là tia phân giác của \(\widehat{ACB}\))

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABH}=\widehat{HBC}=\widehat{ACK}=\widehat{BCK}\)

Xét ΔABH và ΔACK có

\(\widehat{BAH}\) chung

AB=AC(ΔABC cân tại A)

\(\widehat{ABH}=\widehat{ACK}\)(cmt)

Do đó: ΔABH=ΔACK(g-c-g)

18 tháng 4 2021

Tui cần gấp lắm á mn!

 

bn tự vẽ hình nhé

a)Xét tam giác ACK và tam giác ABH:

            góc K=góc H(=90độ)

             AB=AC(gt)

            góc A chung

vậy 2 tam giác này bằng nhau (cgv.gnk)

 

 

20 tháng 3 2022

Em mời có lớp 5 thôi

16 tháng 2 2022

kkkkkkkkkkkkkkkk

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân