K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

- Hầu như các OLmers toàn tầm khoảng 2k4 đến 2k9 nên mk nghĩ là câu này của bn khó cs ai TL đc =))

- Mk nghĩ bn nên vào web : H để đăng bài ! Vì mk thấy ở đó chuyên giải mấy bài khó -,-

- Hoăc bn cs thể nhờ https://olm.vn/thanhvien/linhchi_nguyenthi1997 ( cj này là quản lý của olm và hay giải mấy bài khó )

Ckuc bn hok tốt =))

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng

26 tháng 8 2017

Đáp án A.

NV
30 tháng 3 2019

\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{sin^2x.cosx+2sin2x}{\left(f\left(sinx\right)\right)^2}dx=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{\left(sin^2x+4sinx\right).cosx}{\left(f\left(sinx\right)\right)^2}dx\)

Đặt \(sinx=t\Rightarrow cosx.dx=dt;\left\{{}\begin{matrix}x=\frac{\pi}{6}\Rightarrow t=\frac{1}{2}\\x=\frac{\pi}{3}\Rightarrow t=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\frac{\left(t^2+4t\right)}{f^2\left(t\right)}dt=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\frac{\left(x^2+4x\right)}{f^2\left(x\right)}dx\)

Lại có:

\(x+x.f'\left(x\right)=2f\left(x\right)-4\Leftrightarrow x+4=2f\left(x\right)-x.f'\left(x\right)\)

\(\Leftrightarrow x^2+4x=2x.f\left(x\right)-x^2.f'\left(x\right)\)

\(\Leftrightarrow\frac{x^2+4x}{f^2\left(x\right)}=\frac{2x.f\left(x\right)-x^2.f'\left(x\right)}{f^2\left(x\right)}=\left(\frac{x^2}{f\left(x\right)}\right)'\)

\(\Rightarrow I=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\left(\frac{x^2}{f\left(x\right)}\right)'dx=\frac{x^2}{f\left(x\right)}|^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}=\frac{\left(\frac{\sqrt{3}}{2}\right)^2}{f\left(\frac{\sqrt{3}}{2}\right)}-\frac{\left(\frac{1}{2}\right)^2}{f\left(\frac{1}{2}\right)}=\frac{3}{4b}-\frac{1}{4a}\)

15 tháng 8 2019

Chọn A.

Phương trình 

 thỏa mãn (*)

Ta có 

Do đó: 

3 tháng 12 2018

Đáp án: B.

Hướng dẫn: Đặt u = (x + 1), v' = sinx.

AH
Akai Haruma
Giáo viên
20 tháng 11 2017

Bạn viết đề bài rõ ràng hộ mình nhé đọc đề không dịch được.

21 tháng 11 2017

§1. Nguyên hàm