K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

\(0< x< 90^0\)

=>\(sinx>0\)

\(sin^2x+cos^2x=1\)

=>\(sin^2x=1-\dfrac{4}{9}=\dfrac{5}{9}\)

=>\(sinx=\dfrac{\sqrt{5}}{3}\)

\(cos\left(90-x\right)=sinx=\dfrac{\sqrt{5}}{3}\)

\(cotx=\dfrac{cosx}{sinx}=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

22 tháng 10 2023

Anh ơi , sin\(^2\)x + cos\(^2\)x = 1 chứ ạ

 
3 tháng 5 2021

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

3 tháng 5 2021

ý a,

undefined

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2169=817.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinαcos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)(tan2α+1).

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)(2+1)=3+823(21).

22 tháng 10 2023

\(90< a< 180\)

=>\(sina>0;cosa< 0\)

mà cosa=2/3

nên đề sai rồi bạn

22 tháng 10 2023

Vâng ạ

14 tháng 4 2019

1.

\(\frac{\pi}{2}< x< \pi\\ \Rightarrow cosx< 0,sinx>0,cotx< 0\)

\(cotx=\frac{1}{tanx}=\frac{-1}{3}\)

\(1+tan^2x=\frac{1}{cos^2x}\\ \Rightarrow cosx=\sqrt{\frac{1}{1+tan^2}}=\sqrt{\frac{1}{1+9}}=-\frac{\sqrt{10}}{10}\)

\(sinx=\sqrt{1-cos^2x}=\sqrt{1-\frac{10}{100}}=\frac{3\sqrt{10}}{10}\)

NV
23 tháng 11 2018

Ta có các công thức cơ bản sau: \(cos\left(90^0+x\right)=-sinx;sin\left(90^0-x\right)=cosx\)

\(cot\left(90^0-x\right)=tanx;tan\left(90^0+x\right)=-cotx\)

Thay vào bài toán:

\(\dfrac{1-\left(-sinx\right)^2}{1-cos^2x}-tanx.\left(-cotx\right)=\dfrac{1-sin^2x}{1-cos^2x}+tanx.cotx\)

\(=\dfrac{cos^2x}{sin^2x}+1=\dfrac{cos^2x+sin^2x}{sin^2x}=\dfrac{1}{sin^2x}\)

28 tháng 11 2018

Nguyễn Việt Lâm cảm ơn bn nhá

28 tháng 4 2020

1/ Vì \(\pi< \alpha< \frac{3}{2}\pi\)

\(\Rightarrow\)\(\alpha\in\) góc phần tư thứ 3\(\Rightarrow\sin\alpha< 0;\cos\alpha< 0;\cot\alpha>0\)

2/ Xét 3 trường hợp:

TH1: \(0^0< \alpha< 90^0\) \(\Rightarrow\alpha\in\) góc phần tư thứ nhất\(\Rightarrow\sin\alpha>0;\cos\alpha>0;\cot\alpha>0\)

TH2: \(-90^0< \alpha< 0^0\Rightarrow\alpha\in\) góc phần tư thứ tư

\(\Rightarrow\sin\alpha< 0;\cos\alpha>0;\cot\alpha< 0\)

TH3: \(-170^0< \alpha< -90^0\)\(\Rightarrow\alpha\in\) góc phần tư thứ ba

\(\Rightarrow\sin\alpha< 0;\cos\alpha< 0;\cot\alpha>0\)

3/ Vì...=> \(\alpha\in\) góc phần tư thứ ba

\(\Rightarrow...\)

28 tháng 4 2020

cảm ơn b

Sửa đề: \(2\cdot sin\left(180-a\right)\cdot cota-cos\left(180-a\right)\cdot tana+cot\left(180-a\right)\)

\(=2\cdot sina\cdot cota+cosa\cdot tana+\dfrac{cos\left(180-a\right)}{sin\left(180-a\right)}\)

\(=2\cdot sina\cdot\dfrac{cosa}{sina}+cosa\cdot\dfrac{sina}{cosa}+\dfrac{-cosa}{sina}\)

\(=2cosa+sina-tana\)

NV
5 tháng 4 2020

a/ \(1+cot^2a=\frac{1}{sin^2a}\Rightarrow sin^2a=\frac{1}{1+cot^2a}=\frac{1}{5}\)

\(\Rightarrow\left[{}\begin{matrix}sina=\frac{1}{\sqrt{5}}\Rightarrow cosa=-\frac{2}{\sqrt{5}}\\sina=-\frac{1}{\sqrt{5}}\Rightarrow cosa=\frac{2}{\sqrt{5}}\end{matrix}\right.\)

b/ Đề bài sai rồi bạn, khi \(90^0< a< 180^0\) thì \(cosa< 0\) nên \(cosa=\frac{1}{3}\) là hoàn toàn vô lý