\(\frac{-3}{5}\). Hãy tính sin a, cos a, tan a

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

NV
14 tháng 4 2019

a/

\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)

b/

\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)

c/

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)

\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)

d/

\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)

e/

\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)

Các câu c, e đều sử dụng kết quả từ câu b

NV
14 tháng 4 2019

f/

\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)

\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)

\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)

\(=2.\left(-2sin^2x\right)^2=8sin^4x\)

g/

\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)

h/

\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

i/

\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

j/

\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

NV
13 tháng 4 2020

\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)

a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)

b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)

c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)

d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

NV
3 tháng 6 2020

\(D=\frac{\frac{sina}{cos^3a}+\frac{5cosa}{cos^3a}}{\frac{sin^3a}{cos^3a}-\frac{2cos^3a}{cos^3a}}=\frac{tana.\frac{1}{cos^2a}+\frac{5}{cos^2a}}{tan^3a-2}=\frac{tana\left(1+tan^2a\right)+5\left(1+tan^2a\right)}{tan^3a-2}\)

Bạn thay số và bấm máy

NV
12 tháng 5 2019

\(D=\frac{9sin^2x-4cos^2x}{3sin^2x+2cos^2x}=\frac{\frac{9sin^2x}{cos^2x}-\frac{4cos^2x}{cos^2x}}{\frac{3sin^2x}{cos^2x}+\frac{2cos^2x}{cos^2x}}=\frac{9tan^2x-4}{3tan^2x+2}=\frac{77}{29}\)

\(\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\)

\(\Rightarrow cos^4x=9sin^4x\Rightarrow3sin^4x+9sin^4x=\frac{3}{4}\)

\(\Rightarrow sin^4x=\frac{1}{16}\Rightarrow cos^4x=\frac{9}{16}\)

\(\Rightarrow S=\frac{1}{16}+\frac{27}{16}=\frac{7}{4}\)

NV
10 tháng 4 2019

Câu 1:

\(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)

Ta có: \(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{-1}{\sqrt{1+tan^2a}}=-\frac{3}{5}\)

\(\Rightarrow sina=cosa.tana=\frac{4}{5}\)

\(\Rightarrow P=\frac{\frac{16}{25}+\frac{3}{5}}{\frac{4}{5}-\frac{9}{25}}=\frac{31}{11}\)

Câu 2:

\(P=sin^4a-cos^4a=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a\)

\(P=1-cos^2a-cos^2a=1-2cos^2a\)

Theo cmt ta có \(cos^2a=\frac{1}{1+tan^2a}\Rightarrow P=1-\frac{2}{1+tan^2a}=\frac{12}{13}\)

28 tháng 11 2019

Quên cách giải ptlg rồi nên lm câu 4 =.=

\(\cos3x=\cos\left(2x+x\right)=\cos2x.\cos x-\sin2x.\sin x\)

\(=\left(2\cos^2x-1\right)\cos x-2\sin^2x.\cos x\)

\(=2\cos^3x-\cos x-2\sin^2x.\cos x\)

\(\Rightarrow A=\frac{1+\cos x+2\cos^2x-1+2\cos^3x-\cos x-2\sin^2x.\cos x}{2\cos^2x-1+\cos x}\)

\(=\frac{2\cos^2x+2\cos^3x-2\sin^2x.\cos x}{2\cos^2x-1+\cos x}\)

\(=\frac{2\cos^2x+2\cos^3x-2\left(1-\cos^2x\right).\cos x}{2\cos^2x-1+\cos x}\)

\(=\frac{2\cos^2x+2\cos^3x-2\cos x+2\cos^3x}{2\cos^2x-1+\cos x}\)

\(=\frac{2\cos x\left(2\cos^2x+\cos x-1\right)}{2\cos^2x-1+\cos x}=2\cos x\)