Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi đề lại câu a
b,
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \dfrac{x-1}{2}=\dfrac{2\left(y-2\right)}{2\cdot3}=\dfrac{3\cdot\left(z-3\right)}{3\cdot4}\\ \dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{x-1-\left(2y-4\right)+3z-9}{2-6+12}=\dfrac{x-1-2y+4+3z-9}{8}=\dfrac{\left(x-2y+3z\right)+\left(4-1-9\right)}{8}=\dfrac{14+\left(-6\right)}{8}=\dfrac{8}{8}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\\\dfrac{2y-4}{6}=1\Rightarrow2y-4=6\Rightarrow2y=10\Rightarrow y=5\\\dfrac{3z-9}{12}=1\Rightarrow3z-9=12\Rightarrow3z=21\Rightarrow z=7\end{matrix}\right.\)
Vậy x = 3; y = 5; z = 7
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Rightarrow\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}\)
\(=\dfrac{14-6}{14-6}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\\\dfrac{y-2}{3}=1\\\dfrac{z-3}{4}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{3}\) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\) ⇒ \(\dfrac{y}{12}=\dfrac{z}{15}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)\(=\dfrac{x+y-z}{8+12-15}\) \(=\dfrac{10}{5}=2\)
⇒ \(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\) => \(\dfrac{1}{4}\cdot\dfrac{x}{2}=\dfrac{1}{4}\cdot\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{1}{3}\cdot\dfrac{y}{4}=\dfrac{1}{3}\cdot\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\) và x+y-z=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{8}=2\Rightarrow x=2\cdot8=16\)
\(\dfrac{y}{12}=2\Rightarrow=2\cdot12=24\)
\(\dfrac{z}{15}=2\Rightarrow z=2\cdot15=30\)
vậy x = 16; y = 24; z = 30
Chúc bn học tốt
\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)
\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)
\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)
\(=\dfrac{2x+y-2z-9}{-1}\)
\(=\dfrac{7-9}{-1}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)
\(a,\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{x}{7}\) và \(x+y+z=138\)
\(\dfrac{x}{5}=\dfrac{y}{6}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{24}\) \(\left(1\right)\)
\(\dfrac{y}{8}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{24}=\dfrac{z}{21}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y+z}{20+24+21}=\dfrac{138}{65}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{138}{65}\\\dfrac{y}{24}=\dfrac{138}{65}\\\dfrac{z}{21}=\dfrac{138}{65}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{553}{13}\\y=\dfrac{3312}{65}\\z=\dfrac{2898}{65}\end{matrix}\right.\)
Vậy.......
a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và \(x+y-z=69\)
Theo đề bài, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)
\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))
\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6
Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)
Vì \(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)
\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)
\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)
Vậy x=60; y=72; z=63
a) Giải
Vì \(5x=2y=3z\)
\(\Rightarrow\dfrac{5x}{30}=\dfrac{2y}{30}=\dfrac{3z}{30}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x+y-z}{6+15-10}=\dfrac{33}{11}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=3\Rightarrow x=18\\\dfrac{y}{15}=3\Rightarrow y=45\\\dfrac{z}{10}=3\Rightarrow z=30\end{matrix}\right.\)
Vậy \(x=18,\) \(y=45\) hoặc \(z=30.\)
c) Giải
(Vì mk bt bạn bấm nhầm nên đề bị sai, mk sửa 7 \(\rightarrow\) y do trên bàn phím, 7 với y ở vị trí gần nhau mà 2 với y ở cách xa nhau nên sửa như vậy nhé)
Vì \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}=\dfrac{x-1-2y+4+3z-9}{10}\)
\(=\dfrac{\left(x-2y+3z\right)-\left(1-4+9\right)}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\Rightarrow x=\dfrac{13}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\Rightarrow y=\dfrac{22}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\Rightarrow z=\dfrac{31}{5}\end{matrix}\right.\)
Vậy \(x=\dfrac{13}{5},\) \(y=\dfrac{22}{5}\) và \(z=\dfrac{31}{5}.\)
c) Giải
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Mà \(x^2+2y^2-z^2=-12\)
\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2-\left(5k\right)^2=-12\)
\(\Rightarrow4.k^2+18.k^2-25.k^2=-12\)
\(\Rightarrow\left(-3\right)k^2=-12\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-10\end{matrix}\right.\)
\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-4;y=-6;z=-10\\x=4;y=6;z=10\end{matrix}\right..\)
a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2
vì\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6
\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8
\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10
vậy x=6,y=8,z=10
vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)
từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1
vì\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9
\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12
\(\dfrac{z}{16}\)=-1=>z=-1.16=-16
vậy...
a,3x=2y;7y=5z
=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta co:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)
Các câu sau tương tự
b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6
Từ đề bài ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)
từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3
\(\Rightarrow\)x=3.9=27
y=3.12=36
z=3.20=60
Vậy.....
chúc bạn học tốt,nhớ tick cho mình nha
áp dụng dãy tỉ số = nhau ta có \(\dfrac{1+x}{2}=\dfrac{4-2y}{6}=\dfrac{4+z}{5}=\dfrac{x-2y+z+1+4+4}{2+6+5}=\dfrac{11}{13}\)
\(\dfrac{1+x}{2}=\dfrac{11}{13}\Leftrightarrow13\left(1+x\right)=22\Leftrightarrow13x+13=22\Leftrightarrow x=\dfrac{9}{13}\)
\(\dfrac{2-y}{3}=\dfrac{11}{13}\Leftrightarrow13\left(2-y\right)=33\Leftrightarrow-13y+26=33\Leftrightarrow y=-\dfrac{7}{13}\)
\(\dfrac{4+z}{5}=\dfrac{11}{13}\Leftrightarrow13\left(4+z\right)=55\Leftrightarrow13z+52=55\Leftrightarrow z=\dfrac{3}{13}\)
vậy..................