\(C=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^6-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\)

a)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

24 tháng 5 2021
Gửi bạn....

Bài tập Tất cả

24 tháng 5 2021

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)

\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).

Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).

27 tháng 6 2018

\(a,\)

\(A=\left(\frac{4x}{x+2}-\frac{x^3-8}{x^3+8}.\frac{4x^2-4x+16}{x^2-4}\right):\frac{16}{x+2}.\frac{x^2+3x+2}{x^2+x+1}\)\(ĐKXĐ:x\ne\pm2\)

\(A=[\frac{4x}{x+2}-\frac{\left(x-2\right)\left(x^2+2x+4\right).4\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x+2\right)}]:\frac{16}{x+2}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=[\frac{4x}{x+2}-\frac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}].\frac{x+2}{16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}.\frac{x+2}{16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{16\left(x+2\right)}{\left(x+2\right)^2.16}.\frac{\left(x+1\right)\left(x+2\right)}{x^2+x+1}\)

\(A=\frac{-\left(x+1\right)}{x^2+x+1}\)

\(B=\frac{x^2+x-2}{x^3-1}\)\(ĐKXĐ:x\ne1\)

\(B=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(B=\frac{x+2}{x^2+x+1}\)

\(b,\)

Ta có:

\(A+B=\frac{-\left(x+1\right)}{x^2+x+1}+\frac{x+2}{x^2+x+1}\)

\(=\frac{-x-1+x+2}{x^2+x+1}\)

\(=\frac{1}{x^2+x+1}\)

\(\Rightarrow A+B=\frac{1}{x^2+x+1}=\frac{1}{x^2+2.x.\left(\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{1}{\left(x+\frac{1}{2}\right)^2}+\frac{3}{4}\)

Vì:\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}\)

\(\Rightarrow A+B\le\frac{4}{3}\)

\(\Rightarrow GTLN\)của \(A+B=\frac{4}{3}\Leftrightarrow x+\frac{1}{2}=0\)

                                                        \(\Leftrightarrow x=\frac{-1}{2}\left(TMĐK\right)\)

Vậy........

3 tháng 2 2020

\(ĐKXĐ:x\ne0;x\ne\pm2\)

a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{1}{2-x}\)

b) Để M đạt giá trị lớn nhất

\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất

\(\Leftrightarrow x\)đạt giá trị lớn nhất

Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)

5 tháng 2 2020

玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường