Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+c\)
Ta có : \(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+c\)
\(=0\)
\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)
\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)
\(\Rightarrow\) \(đpcm\)
Study well ! >_<
Bổ sung đề \(m\in Z\)
\(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(m\left(m+1\right)\left(m+2\right)\) là tích 3 số liên tiếp nên chia hết cho 3.
Khi đó C có dạng:\(\frac{3k+2}{3k}\) nên là số hữu tỉ.
zZz Cool Kid zZzMình cx mới vừa nghĩ ra cách c/m lun.
Đầu tiên mình chứng minh C là p/s tối giản và mẫu chia hết cho 3, tử ko chia hết cho 3 nên C là số thập phân vô hạn tuần hoàn.
Suy ra C là số hữu tỉ
a,
\(3-\left|\dfrac{-1}{2}\right|\\ =3-\dfrac{1}{2}\\ =\dfrac{6}{2}-\dfrac{1}{2}\\ =\dfrac{5}{2}\)
b,
\(\left|\dfrac{-1}{4}\right|+\dfrac{3}{4}-\left|-1\right|\\ =\dfrac{1}{4}+\dfrac{3}{4}-1\\ =1-1\\ =0\)
c,
\(\left|0,25\right|=-\left(-0,25\right)\\ 0,25=0,25\)