K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Câu 1: (2,5 điểm)    Cho biểu thức:a) Rút gọn A.b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0c) Tìm x để A = 1/2d) Tìm x nguyên để A nguyên dương.Câu 2: (1điểm)a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.HD:          a < b => -3a > -3bCâu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận...
Đọc tiếp

Câu 1: (2,5 đim)    Cho biểu thức:

2016-04-27_171121

a) Rút gọn A.

b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0

c) Tìm x để A = 1/2
d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.

HD:          a < b => -3a > -3b

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

HD: Đổi 45’ = ¾ h, quãng đường AB = S => S = vt hay S/15 = S/12+3/4

2016-04-27_171454

Câu 4:  (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình. 

2016-04-27_171602

 Câu 5: (1,5 điểm)

a. Viết công thức tính thể tích của hình hộp chữ nhật.

 b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

 

  b) Chứng minh: AH2 = HB.HC.

  c) Tính độ dài các cạnh BC, AH.

9
29 tháng 4 2016

đây là nick phụ của bạn trần việt hà

29 tháng 4 2016

không phải

8 tháng 6 2019

Chọn D.

Phương pháp

Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d: 

27 tháng 4 2017

Suy ra có 11 giá trị n nên có 11 phần tử bằng nhau. Chọn C.

1 tháng 10 2019

Đáp án là A

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

15 tháng 2 2016

giúp mình vs. Mai hạn cuối rồi

9 tháng 8 2018

Đáp án là C

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)