Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|\overrightarrow{a}+\overrightarrow{b}\right|^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)
\(=5^2+12^2+2.5.12.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\)
\(=169+120cos\left(\overrightarrow{a},\overrightarrow{b}\right)=13^2\)
Suy ra: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=0\).
\(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\overrightarrow{a}\right)^2+\overrightarrow{a}.\overrightarrow{b}=5^2+5.12.0=25\).
Mặt khác \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|.\left|\overrightarrow{a}+\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
Vì vậy \(25=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
\(cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)=\dfrac{5}{13}\).
Vậy góc giữa hai véc tơ \(\overrightarrow{a}\) và \(\overrightarrow{a}+\overrightarrow{b}\) là \(\alpha\) sao cho \(cos\alpha=\dfrac{5}{13}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a → . b → = a → . b → . cos a → , b → = 4.5. cos 120 ° = 4.5. − 1 2 = − 10
Chọn B.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nghe mấy tiền bối đồn là đề này nằm trong đề đại học năm nào đó. Tự tìm nhá
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)
Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{1}{a+b}+\frac{1}{b+c}\ge2\sqrt{\frac{1}{a+b}\frac{1}{b+c}}=2\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{4}{a+2b+c}\)
Tương tự có: \(\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{4}{a+2c+b}\)
\(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{b+2a+c}\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{c+b}+\frac{1}{a+c}\ge2\left(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\right)\)
Ta CM: \(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\). Thật vậy:
\(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\)\(\Leftrightarrow a^2+63\ge6b+12a+6c\)\(\Leftrightarrow2a^2+b^2+c^2+36-6b-12a-6c\ge0\)
\(\Leftrightarrow2\left(a-3\right)^2+\left(b-3\right)^2+\left(c-3\right)^2\ge0\) ( luôn đúng)
Dấu '=' xảy ra <=> a=b=c=3
Vậy \(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\ge\frac{6}{a^2+63}+\frac{6}{b^2+63}+\frac{6}{c^2+63}\)
=> đpcm
a → . b → = a → . b → . cos a → , b → = 4.6. cos 120 ° = 24. − 1 2 = − 12
CHỌN B.