Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2a^2}{2c^2}=\frac{3b^2}{3d^2}\)\(=\frac{2a^2+3b^2}{2c^2+3d^2}\)( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a^2}{c^2}=\frac{2a^2+3b^2}{2c^2+3d^2}\)
2) \(\frac{a}{b}=\frac{c}{d}\)\(=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\frac{2a-3c}{2b-3d}=\frac{c}{d}\)\(\Rightarrow\frac{2a-3c}{c}=\frac{2b-3d}{d}\)
1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)
\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)
\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)
\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)
\(\Leftrightarrow-zy+x^2=-x^2+yz\)
\(\Leftrightarrow-2x^2=-2zy\)
\(\Leftrightarrow x^2=yz\)(đpcm)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)
Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)