Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(P=\frac{1}{1+x+xy+xyz}+\frac{1}{1+y+yz+yzt}+\frac{1}{1+z+zt+ztx}+\frac{1}{1+t+tx+txy}\)
\(=\frac{1}{1+x+xy+xyz}+\frac{x}{x+xy+xyz+xyzt}+\frac{xy}{xy+xyz+xyzt+xyzt.x}+\frac{xyz}{xyz+xyzt+xyzt.x+xyzt.xy}\)
\(=\frac{1}{1+x+xy+xyz}+\frac{x}{x+xy+xyz+1}+\frac{xy}{xy+xyz+1+x}+\frac{xyz}{xyz+1+x+xy}\)
\(=\frac{1+x+xy+xyz}{1+x+xy+xyz}\)
\(=1\)
\(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}\)
\(=\dfrac{xyz}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)
Vậy...
êu , sao \(\dfrac{1}{xy+x+1}\)+... lại bằng \(\dfrac{xyz}{xy+z+zxy}\)+... vậy ?
\(A=\dfrac{x}{xy+x+1}+\dfrac{y}{y+1+yz}+\dfrac{z}{1+z+xz}\)
\(=\dfrac{x}{xy+x+xyz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+z}\)
\(=\dfrac{x}{x\left(y+1+yz\right)}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)
\(=\dfrac{1}{y+1+yz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)
\(=\dfrac{1+y+yz}{y+1+yz}=1.\)
\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)
Đặt biểu thức trên là A, thay xyz = 2018, ta dược :
\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)
\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)
⇒ĐPCM
Please help me!!!!!!!!!!!
I feel this exercise is difficult!!!!!!
\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+xyzt}+\)
\(\dfrac{xy}{xy+xyz+xyzt+xyzt\cdot x}+\dfrac{xyz}{xyz+xyzt+xyzt\cdot x+xyzt\cdot xy}\)
\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+1}+\)
\(\dfrac{xy}{xy+xyz+1+x}+\dfrac{xyz}{xyz+1+x+xy}\) ( do xyzt = 1 )
\(P=\dfrac{1+x+xy+xyz}{1+x+xy+xyz}=1\)