Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3
Lời giải:
Đặt các PT lần lượt là PT(1); PT(2) và PT(3)
Từ PT(2) \(\Rightarrow x^2,y^2,z^2\leq 1\Rightarrow x,y,z\leq 1\)
Lấy PT(3) trừ PT(2) thu được:
\(x^2(x-1)+y^2(y-1)+z^2(z-1)=0\)
Vì $x^2\geq 0, \forall x$; $x-1\leq 0$ với mọi $x\leq 1$ nên $x^2(x-1)\leq 0$
Tương tự: $y^2(y-1)\leq 0; z^2(z-1)\leq 0$
Khi đó, để tổng $x^2(x-1)+y^2(y-1)+z^2(z-1)=0$ thì $x^2(x-1)=y^2(y-1)=z^2(z-1)=0$
$\Rightarrow x,y,z\in\left\{0;1\right\}
Kết hợp với PT(1) suy ra $(x,y,z)=(1,0,0)$ và hoán vị
Do đó:
$A=x+y^2+z^3=1$
Lời giải:
Đặt các PT lần lượt là PT(1); PT(2) và PT(3)
Từ PT(2) \(\Rightarrow x^2,y^2,z^2\leq 1\Rightarrow x,y,z\leq 1\)
Lấy PT(3) trừ PT(2) thu được:
\(x^2(x-1)+y^2(y-1)+z^2(z-1)=0\)
Vì $x^2\geq 0, \forall x$; $x-1\leq 0$ với mọi $x\leq 1$ nên $x^2(x-1)\leq 0$
Tương tự: $y^2(y-1)\leq 0; z^2(z-1)\leq 0$
Khi đó, để tổng $x^2(x-1)+y^2(y-1)+z^2(z-1)=0$ thì $x^2(x-1)=y^2(y-1)=z^2(z-1)=0$
$\Rightarrow x,y,z\in\left\{0;1\right\}$
Kết hợp với PT(1) suy ra $(x,y,z)=(1,0,0)$ và hoán vị
Do đó:
$A=x+y^2+z^3=1$
b)Đặt $S=x+y,P=xy$ thì được:
\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)
\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)
\(x^3+3y^2-6y+3+8=0\Leftrightarrow3\left(y-1\right)^2=-x^3-8\)
\(3\left(y-1\right)^2\ge0\Rightarrow-x^3-8\ge0\Rightarrow x\le-2\) (1)
Từ pt sau ta có:
\(\left(x^2-3\right).y^2-2y+x^2-3=0\)
\(\Delta'=1-\left(x^2-3\right)^2\ge0\Leftrightarrow-1\le x^2-3\le1\)
\(\Rightarrow2\le x^2\le4\Rightarrow\left|x\right|\le2\Rightarrow x\ge-2\) (2)
Từ (1) và (2) \(\Rightarrow x=-2\Rightarrow y=1\) \(\Rightarrow A=-7\)