\(\frac{x}{5+4y^2}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

31 tháng 1 2021

Bài 1: 

Ta có: \(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}=\frac{1}{1+x^2}+\frac{1}{1+\frac{y^2}{4}}\)

Đặt \(\left(x;\frac{y}{2}\right)=\left(a;b\right)\left(a,b>0\right)\)

\(\Rightarrow\hept{\begin{cases}P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\\ab\ge1\end{cases}}\)

Ta có: \(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\)

\(\ge\frac{1}{ab+a^2}+\frac{1}{ab+b^2}+2ab=\frac{1}{ab}+2ab\)

\(=\left(\frac{1}{ab}+ab\right)+ab\ge2+1=3\)

Dấu "=" xảy ra khi: \(ab=\frac{1}{ab}\Rightarrow ab=1\Rightarrow xy=2\)

31 tháng 1 2021

Bài 3: 

Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\left(x,y,z>1\right)\)

Khi đó:

\(BĐTCCM\Leftrightarrow\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\ge12\)

Thật vậy vì ta có:

\(VT=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\)

\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{z}+\frac{z^2+2z+1}{x}\)

\(=\left(\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}\right)+\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Áp dụng BĐT Cauchy ta có:

\(VT\ge3\sqrt[3]{\frac{2x}{y}\cdot\frac{2y}{z}\cdot\frac{2z}{x}}+6\sqrt[6]{\frac{x^2}{y}\cdot\frac{y^2}{z}\cdot\frac{z^2}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}=6+6=12\)

Dấu "=" xảy ra khi: \(x=y=z\Leftrightarrow a=b=c\)

23 tháng 3 2021

- Áp dụng bất đẳng thức Cô si ta có

              \left(x.\frac{1}{2}+x.\frac{1}{2}+y.\frac{1}{2}+y.\frac{1}{2}+x.\sqrt{1-x^2}+y.\sqrt{1-x^2}\right)^2\le(x.21​+x.21​+y.21​+y.21​+x.1−x2​+y.1−x2​)2≤

                 \left(x^2+x^2+y^2+y^2+x^2+y^2\right)\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+1-x^2+1-y^2\right)(x2+x2+y2+y2+x2+y2)(41​+41​+41​+41​+1−x2+1−y2)

tức là         \left(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(3x^2+3y^2\right)\left(3-x^2-y^2\right)(x+y+x1−y2​+y1−x2​)2≤(3x2+3y2)(3−x2−y2)

Suy ra          x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{3}.\sqrt{\left(x^2+y^2\right)\left(3-x^2-y^2\right)}x+y+x1−y2​+y1−x2​≤3​.(x2+y2)(3−x2−y2)​

                                                                                               \le\sqrt{3}.\frac{\left(x^2+y^2\right)+\left(3-x^2-y^2\right)}{2}≤3​.2(x2+y2)+(3−x2−y2)​

 hay        x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}x+y+x1−y2​+y1−x2​≤233​​  (đpcm)

23 tháng 3 2021

Viết lại điều kiện đã cho dưới dạng

        \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6ab1​+bc1​+ca1​+a1​+b1​+c1​=6

Áp dụng bất đẳng thức hiển nhiên      xy+yz+zx\le x^2+y^2+z^2xy+yz+zxx2+y2+z2  ta có

 \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}ab1​+bc1​+ca1​≤a21​+b21​+c21​     (1)

Lại áp dụng     x\le\frac{x^2+1}{2}x≤2x2+1​, ta có     \frac{1}{a}\le\frac{1}{2}\left(1+\frac{1}{a^2}\right)a1​≤21​(1+a21​), do đó

                                                \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{3}{2}a1​+b1​+c1​≤21​(a21​+b21​+c21​)+23​   (2)

Cộng theo vế (1), (2) và chú ý đến điều kiện ta được

   6\le\frac{3}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{3}{2}6≤23​(a21​+b21​+c21​)+23​

Suy ra   3\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}3≤a21​+b21​+c21​    (đpcm)