\(\left\{{}\begin{matrix}x^3-3x^2+6x+1=0\\y^3-6y^2+15y-9=0\end{matrix...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Cái này lớp 9 mà bạn

28 tháng 3 2020

vậy bạn giúp mình đc ko?

NV
4 tháng 6 2019

\(x^3+3y^2-6y+3+8=0\Leftrightarrow3\left(y-1\right)^2=-x^3-8\)

\(3\left(y-1\right)^2\ge0\Rightarrow-x^3-8\ge0\Rightarrow x\le-2\) (1)

Từ pt sau ta có:

\(\left(x^2-3\right).y^2-2y+x^2-3=0\)

\(\Delta'=1-\left(x^2-3\right)^2\ge0\Leftrightarrow-1\le x^2-3\le1\)

\(\Rightarrow2\le x^2\le4\Rightarrow\left|x\right|\le2\Rightarrow x\ge-2\) (2)

Từ (1) và (2) \(\Rightarrow x=-2\Rightarrow y=1\) \(\Rightarrow A=-7\)

21 tháng 2 2018

a) \(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)+\left(-30x^2+30x-30\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

21 tháng 2 2018

b) \(\left\{{}\begin{matrix}x+y+z=2\left(1\right)\\2xy-z^2=4 \left(2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=4\\2xy-z^2=4\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=2xy-z^2\)

\(\Leftrightarrow x^2+y^2+2z^2+2yz+2xz=0\)

\(\Leftrightarrow\left(x+z\right)^2+\left(y+z\right)^2=0\)

\(\Rightarrow x=y=-z\) thay vào (1) ta được : \(-z-z+z=2\Rightarrow z=-2\)

\(\Rightarrow x=y=2\)

Vậy \(x=y=2;z=-2\)

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

18 tháng 1 2020

b)Đặt $S=x+y,P=xy$ thì được:

\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)

18 tháng 1 2020

\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)

15 tháng 2 2017

bấm máy tính

15 tháng 2 2017

Thế thì nói chuyện làm gì

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0