K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

Ta có : x3 + y3 = z(3xy - z2)

=> x3 + y3 = 3xyz - z3

=> x3 + y3 + z3 - 3xyz = 0

=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0

=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0

=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz  = 0

=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0

=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0

=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)

=> 2(x2 + y2 + z2 - xy - yz - zx) = 0

=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0

=> (x - y)2 + (y - z)2 + (x - z)2 = 0

=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)

mà x + y + z = 3

=> x = y = z = 1

Khi đó A = 673(x2019 + y2019 + z2019) + 1 

= 673(12019 + 12019 + 12019) + 1

= 673.3 + 1 = 2020

Vậy A = 2020

29 tháng 3 2020

Bài 1 : Giải

Lưu ý : b2 = a.c ; c2 = b.d 

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)

Vậy M = 1/2

Bài 2 : 

Ta có : x - y cùng tính chẵn lẻ với x - y

           : y - 2 cùng tính chẵn lẻ với y  - 2 

          : 2 - x cùng tính chẵn lẻ với 2-x 

=> | x - y | + | y - 2 | + | 2 - x |  cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x ) 

    =  x -y + y - 2 + 2 - x     = 0 là 1 số chẵn 

=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn 

=> không có x ; y ; z thỏa mãn điều kiện trên

30 tháng 3 2020

2 ở đâu ra hả bạn

24 tháng 10 2021

Mình nhầm xíu :

Tính giá trị của biểu thức : 

P = x2015 + y2015 + z2015

24 tháng 10 2021

   Ta có : x + y + z = 1

=> (x + y + z)3 = 1

=> x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1

=> (x + y)(y + z)(z + x) = 0

<=> x = -y hoặc y = -z hoặc z = -x

Nếu x = -y => x = y = 0 ; z = 1

Nếu y = -z => y = z = 0 ; x = 1

Nếu z = -x => z = x = 0 ; y = 1

Khi đó P = 1

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

30 tháng 12 2018

khó quá

30 tháng 12 2018

mình mới họclớp 5 à khó quá

4 tháng 1 2018

Đặt x/2017=y/2018=z/2019=k => x=2017k,y=2018k,z=2019k

Ta có: 4(x-y)(y-z)=4(2017k-2018k)(2018k-2019k)=4(-k)(-k)=4k(1)

(z-x)2 = (2019k-2017k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => đpcm