Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
Làm phần min trước, Max để mai:
Ta chứng minh \(P\ge\frac{18}{25}\).
*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)
*Nếu x khác 0. Xét hiệu hai vế ta thu được:
\(\ge0\)
P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...
Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé
x^2+y^2=4+xy
suy ra A_max thì xy max
ta có x^2+y^2>=2xy suy ra x^2+y^2=2xy (1) (để xy max)
x^2+y^2=4+xy (2)
Từ 1 và 2 suy ra 2xy=4+xy
suy ra xy=4
suy ra x^2+y^2=8
dấu"=" khi x=y
mình làm cho bạn 2 cách nha
Cách 1 )
ta có \(1\le y\le2\Leftrightarrow\frac{1}{y^2+1}\ge\frac{1}{2x+3}\)
ta có \(xy+2\ge2y\Leftrightarrow x\ge\frac{2\left(y-1\right)}{y}\ge0\)
ta có \(M=\frac{x^2+4}{y^2+1}=\left(x^2+4\right).\frac{1}{y^2+1}\ge\left(2x+3\right).\frac{1}{2x+3}=1\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
zậy \(minM=\frac{x^2+4}{y^2+1}khi\hept{\begin{cases}x=1\\y=2\end{cases}}\)
cách 2)
ta có \(1\le y\le2;xy+2\ge2y\Leftrightarrow4xy+8\ge8y;4x^2+y^2+8\ge4xy+8\)
từ đó ta có
\(4\left(x^2+4\right)\ge-y^2+8+8y=4\left(y^2+1\right)+\left(5y+2\right)\left(2-y\right)\ge4\left(x^2+1\right)\Rightarrow M=1\)
zậy kết luận như cách 1
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
Lời giải:
$P=x^4+y^4-x^2y^2=(x^2+y^2)^2-2x^2y^2-x^2y^2$
$=(x^2+y^2)^2-3x^2y^2=(1+xy)^2-3x^2y^2=-2x^2y^2+2xy+1$
$=-2t^2+2t+1$ (đặt $t=xy$)
Mặt khác, từ đề bài ta có:
$1+xy-2xy=x^2+y^2-2xy=(x-y)^2\geq 0$
$\Leftrightarrow xy\leq 1$
$1+xy+2xy=x^2+y^2+2xy=(x+y)^2\geq 0$
$\Rightarrow xy\geq \frac{-1}{3}$
Vậy, ta cần tìm min, max $P=-2t^2+2t+1$ với $\frac{-1}{3}\leq t\leq 1$
Ta thấy:
$P=\frac{3}{2}-2(t^2-t+\frac{1}{4})=\frac{3}{2}-2(t-\frac{1}{2})^2\leq \frac{3}{2}$ với mọi $-\frac{1}{3}\leq t\leq 1$
Do đó $P_{\max}=\frac{3}{2}$
Mặt khác:
$P=-2t^2+2t+1=-\frac{2}{3}t(3t+1)+\frac{8}{9}(3t+1)+\frac{1}{9}$
$=\frac{1}{9}(3t+1)(8-6t)+\frac{1}{9}$
Với $\frac{-1}{3}\leq t\leq 1$ thì: $3t+1\geq 0; 8-6t\geq 0$
$\Rightarrow P\geq \frac{1}{9}$
Vậy $P_{\min}=\frac{1}{9}$
P=x4+y4−x2y2=(x2+y2)2−2x2y2−x2y2P=x4+y4−x2y2=(x2+y2)2−2x2y2−x2y2
=(x2+y2)2−3x2y2=(1+xy)2−3x2y2=−2x2y2+2xy+1=(x2+y2)2−3x2y2=(1+xy)2−3x2y2=−2x2y2+2xy+1
=−2t2+2t+1=−2t2+2t+1 (đặt t=xyt=xy)
Mặt khác, từ đề bài ta có:
1+xy−2xy=x2+y2−2xy=(x−y)2≥01+xy−2xy=x2+y2−2xy=(x−y)2≥0
⇔xy≤1⇔xy≤1
1+xy+2xy=x2+y2+2xy=(x+y)2≥01+xy+2xy=x2+y2+2xy=(x+y)2≥0
⇒xy≥−13⇒xy≥−13
Vậy, ta cần tìm min, max P=−2t2+2t+1P=−2t2+2t+1 với −13≤t≤1−13≤t≤1
Ta thấy:
P=32−2(t2−t+14)=32−2(t−12)2≤32P=32−2(t2−t+14)=32−2(t−12)2≤32 với mọi −13≤t≤1−13≤t≤1
Do đó Pmax=32Pmax=32
Mặt khác:
P=−2t2+2t+1=−23t(3t+1)+89(3t+1)+19P=−2t2+2t+1=−23t(3t+1)+89(3t+1)+19
=19(3t+1)(8−6t)+19=19(3t+1)(8−6t)+19
Với −13≤t≤1−13≤t≤1 thì: 3t+1≥0;8−6t≥03t+1≥0;8−6t≥0
⇒P≥19⇒P≥19
Vậy Pmin=19