Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mk nghĩ đề đúng thì chắc cách giải như zầy
\(\Rightarrow\hept{\begin{cases}x+\sqrt{1+x^2}=\frac{1}{y+\sqrt{1+y^2}}\\y+\sqrt{1+y^2}=\frac{1}{x+\sqrt{1+x^2}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+\sqrt{1+x^2}-\sqrt{1+y^2}+y=0\\y+\sqrt{1+y^2}-\sqrt{1+x^2}+x=0\end{cases}}\)
\(\Leftrightarrow2x+2y=0\Leftrightarrow x+y=0\)
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Nhân hai vế của đẳng thức với: \(\sqrt{x^2+1-x}\)
Ta được: \(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)
\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)
\(\Leftrightarrow x+y=\sqrt{x^2+1}-\sqrt{y^2+1}\left(1\right)\)
Mặt khác ta có: \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Nhân hai vế của đẳng thức với: \(\sqrt{y^2+1}-y\)
Ta được: \(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{y^2+1}-y\)
\(\Leftrightarrow x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)
\(\Leftrightarrow x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow x+y=0\left(đpcm\right)\)
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
\(\left(x+1+\sqrt{\left(x+1\right)^2+1}\right)\left(y-1+\sqrt{\left(y-1\right)^2+1}\right)=0\) (1)
Nhân 2 vế với \(\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) và rút gọn
\(\Rightarrow y-1+\sqrt{\left(y-1\right)^2+1}=\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) (2)
Nhân 2 vế của (1) với \(\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) và rút gọn
\(\Rightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) (3)
Cộng vế với vế (2) và (3) và rút gọn:
\(\Rightarrow y+x=-x-y\)
\(\Leftrightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)