\(0\le x,y,z\le2\) và \(x+y+z=5\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 5 2020

Ta có: \(2\sqrt{2}-1< \sqrt{5}\)

\(A^2=x+y+z+2\left(\sqrt{xy}+yz+zx\right)=5+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\ge5\)

\(\Rightarrow A\ge\sqrt{5}>2\sqrt{2}-1\Rightarrow A-2\sqrt{2}+1>0\)

\(0\le x;y;z\le2\Rightarrow0\le\sqrt{x};\sqrt{y};\sqrt{z}\le\sqrt{2}\)

\(\Rightarrow\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{y}-\sqrt{2}\right)+\left(\sqrt{y}-\sqrt{2}\right)\left(\sqrt{z}-\sqrt{2}\right)+\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{z}-\sqrt{2}\right)\ge0\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\ge2\sqrt{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-6=2\sqrt{2}A-6\)

\(\Rightarrow A^2\ge5+2\left(2\sqrt{2}A-6\right)\)

\(\Leftrightarrow A^2-4\sqrt{2}A+7\ge0\)

\(\Leftrightarrow\left(A-2\sqrt{2}+1\right)\left(A-2\sqrt{2}-1\right)\ge0\)

\(\Leftrightarrow A-2\sqrt{2}-1\ge0\)

\(\Rightarrow A\ge2\sqrt{2}+1\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;2;2\right)\) và hoán vị

22 tháng 4 2020

Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:

\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)

Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)

\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)

Do đó:

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)

\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)

Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)

\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)

\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)

Vậy \(A\ge2\sqrt{2}+1\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)

Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị

7 tháng 6 2020

ngu thế mà tao cũng ko bt

12 tháng 5 2020

Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:

\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)

Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)

\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)

Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)

\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)

\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)

Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)

\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))

Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)

Vậy \(A\ge2\sqrt{2}+1\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)

Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.

5 tháng 6 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ ngu mak đòi lm solo toán ko :PP

26 tháng 1 2020

Ta có: \(0\le x,y,z\le2\)\(x+y+z=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=2\\z=1\end{matrix}\right.\)$;$\(\left[{}\begin{matrix}x=1\\y=z=2\end{matrix}\right.;\left[{}\begin{matrix}x=z=2\\y=1\end{matrix}\right.\)

\(\rightarrow A=\sqrt{x}+\sqrt{y}+\sqrt{z}\) có $GTNN$ của $A$ là \(\sqrt{2}+\sqrt{2}+\sqrt{1}=2\sqrt{2}+1\)

27 tháng 1 2020

thực đâu phải nguyên b

3 tháng 1 2021

\(P\ge\frac{x+y+z}{2}\ge\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\frac{1}{2}\)

"=" khi \(x=y=z=\frac{1}{3}\)

5 tháng 12 2019

\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x=y=z=1 

16 tháng 10 2017

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)

11 tháng 10 2018

c) theo bunhia ta có:

\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)

\(\Rightarrow VT\le\sqrt{6}\)

13 tháng 10 2018

bạn giải hẳn ra đc k?

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

31 tháng 5 2019

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1