Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)
\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)
\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Dấu "=" <=> x=y=z=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(x^2+y^2\ge0\) \(\forall x;y\Rightarrow x+y\ge0\)
Lại có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow x+y\ge\frac{\left(x+y\right)^2}{2}\)
\(\Rightarrow2\left(x+y\right)-\left(x+y\right)^2\ge0\Rightarrow\left(x+y\right)\left(2-\left(x+y\right)\right)\ge0\)
- Nếu \(x+y=0\Rightarrow x+y< 2\) BĐT đúng
- Nếu \(x+y>0\Rightarrow2-\left(x+y\right)\ge0\Rightarrow x+y\le2\)
Vậy \(x+y\le2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x>y=> x-y>0
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
=> áp dụng bđt cosi ta có: \(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{\left(x-y\right)}}=2\sqrt{2}\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả thiết cho ta \(\left(x^2+y^2\right)^2+x^2+2y^2=3.\) Đặt \(t=x^2+y^2\) (ta có \(t\ge0\)).
Giá trị lớn nhất: Từ giả thiết ta suy ra \(t^2+t=3-y^2\le3\to\left(t+\frac{1}{2}\right)^2\le3+\frac{1}{4}\to t\le\frac{\sqrt{13}-1}{2}\)
Dấu bằng xảy ra khi và chỉ \(y=0,x=\pm\sqrt{\frac{\sqrt{13}-1}{2}}\). Vậy giá trị lớn nhất của \(B=t\) là \(\frac{\sqrt{13}-1}{2}.\)
Giá trị bé nhất: Từ giả thiết \(t^2+2t=3+x^2\ge3\to\left(t+1\right)^2\ge4\to t+1\ge2\to t\ge1.\) Dấu bằng xảy ra khi \(x=0,y=\pm1\). Vậy giá trị bé nhất của \(B=t\) là \(1.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cauchy-Schwaz:
\(\left(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\right)\left[xy^2+y^2\left(x+2y\right)\right]\ge\left(x^2+3y^2\right)^2\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2xy^2+2y^3}\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge\frac{\left(x^2+3y^2\right)^2}{2y^2\left(x+y\right)}\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge x+y\)
Do đó: Áp dụng BĐT AM-GM ngược dấu:
\(2y^2\left(x+y\right)\le2y^2\left(x^2+y^2\right)\le\frac{\left(x^2+y^2+2y^2\right)^2}{4}\)
\(\Leftrightarrow2y^2\left(x+y\right)\le\frac{\left(x^2+3y^2\right)^2}{4}\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\) (đpcm)
Dấu "=" xảy ra khi x=y=1
Vậy \(\frac{x^3}{y^2}+\frac{9y^2}{x+2y}\ge4\)
\(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=3\)
\(\Leftrightarrow\left(x^2-3-x^2\right)\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\)
\(\Leftrightarrow y+\sqrt{3+y^2}=\sqrt{3+x^2}-x\)
Tương tự: \(x+\sqrt{3+x^2}=\sqrt{3+y^2}-y\)
Trừ vế với vế ta được: \(2y=-2x\Leftrightarrow x+y=0\)
Ta có đpcm.